Infectious Disease Research

Pre-hospital treatment of meningococcal disease

Amanda Kvalsvig

Department of Public Health University of Otago Wellington

PhD Supervisors

Michael Baker & Tony Blakely

OTAGO Structure of this presentation

- 1. The study question
- 2. Methods
- 3. Results
- 4. Conclusions and next steps

Meningococcal disease

- Rapidly evolving, severe infection
- Hospital-based research suggests that early antibiotic treatment reduces case fatality risk

Meningococcal disease

- Rapidly evolving, severe infection
- Hospital-based research suggests that early antibiotic treatment reduces case fatality risk

Recommendation:

Give parenteral antibiotics in primary care, before hospital admission

The problem

1. Most studies suggesting a treatment benefit have low study power

2. Two studies reported increased odds of death following antibiotics

Nørgård adjusted OR 2.4 (1.0 – 5.6)

Harnden adjusted OR 7.45 (1.47 – 37.67)

3. Systematic review (Hahné et al.):

"We cannot conclude from this review whether or not antibiotics given before admission have an effect on case fatality"

4. Cochrane reviews: **no randomised controlled trials** therefore did not comment

Meningococcal surveillance data

- Notifiable disease
- Surveillance database (Episurv): ESR collates data from
 - Notification (case report form)
 - Laboratories
- Information about whether the patient saw a doctor prior to admission (during study period this would have been a GP)
- Pre-hospital antibiotic treatment recorded since 1995

NZ meningococcal disease epidemic

Study overview

Estimate the effect of pre-hospital parenteral antibiotics on case fatality risk in meningococcal disease

• Data source: NZ surveillance data 1995-2006

• n = 5340 (3427 general practitioner)

Exposure: Pre-hospital parenteral antibiotics

Outcome: Death vs survival

Bias in observational studies

www.xkcd.com

Missing data and complete case analysis

3427 cases saw a GP

Missing data and complete case analysis

3427 cases saw a GP

1156
Data complete for all covariates

Missing data and complete case analysis

Concerns about:

- Study power
- Selection bias

... led to decision to impute data

Multiple imputation using chained equations

Main analysis results

Adjusted RR of death following antibiotic treatment = 0.54 (95%CI 0.33 to 0.90).

Potential biases in this study

- •Selection bias (from complete case analysis)
- •Misclassification (e.g. treatment, petechial rash)
- Unmeasured confounding (severity, diagnosis)

Principles of quantitative bias analysis

- Identify potential biases of concern for the analysis
- Determine bias parameters using data internal or external to the study
- Adjust the estimate of effect to take the bias into account

Principles of quantitative bias analysis

- Identify potential biases of concern for the analysis
- Determine bias parameters using data internal or external to the study
- Adjust the estimate of effect to take the bias into account

- Ask "What if" questions
- Follow the logic

Misclassification of petechial rash

- Petechial rash at GP consult likely to be substantially mismeasured
- Woodward et al: sensitivity = 1.0 but specificity = 0.48
- Probabilistic bias analysis based on above parameters

Misclassification of petechial rash

- Petechial rash at GP consult likely to be substantially mismeasured
- Woodward et al: sensitivity = 1.0 but specificity = 0.48
- Probabilistic bias analysis based on above parameters

Effect of antibiotics on outcome

Observed risk ratio: $0.54 \quad (0.35 - 0.84)$

After adjustment: $0.47 \quad (0.30 - 0.73)$

Potential biases in this study

- •Selection bias (from complete case analysis) ✓
- •Misclassification (e.g. treatment, petechial rash) ✓
- •Unmeasured confounding (severity, diagnosis) ✓

Public health conclusions

- 1. Pre-hospital antibiotics improve survival in meningococcal disease
- 2. No biases detected that would alter that conclusion

Methodological conclusions

- 1. New and emerging epidemiological methods provide us with a toolkit to identify and minimise bias.
- 2. The toolkit allows us to maximise the usefulness of the (imperfect) observational data that we have.
- 3. It's particularly valuable when a randomised controlled trial is not feasible.

Strengths of this study relative to previous research

Data infrastructure

- Large number of cases to analyse
- Information on exposure, outcome, confounders in surveillance data

Analysis

- Use of causal modelling to determine the analysis model
- Estimate adjusted for proposed confounders
- Missing data addressed using multiple imputation
- Results tested using quantitative bias analysis methods

Challenges for translation

- Difficulty of early diagnosis of meningococcal disease: early symptoms and signs are nonspecific
- Proportion of cases treated was low and continues to decline
- Fewer cases are seeing a GP before admission
- Qualitative research: GPs reluctant to give parenteral antibiotics
- Some indications in the data of inequities in access to care

NZ Integrated Data Infrastructure

- Many potential applications for meningococcal disease epidemiology
- Causal epidemiological methods can help us to get the most out of our data

http://www.stats.govt.nz/

Age distribution 1995 - 2006

Area deprivation and GP consultation

Risk ratio of seeing a GP by area deprivation, estimated using a generalised linear model and adjusted for age, sex and ethnicity. The reference category (RR=1.00) is the most advantaged decile (i.e. decile 1). The bars represent the 95% confidence interval around the RR.

Missing time measurements

Time from onset to admission in hours

Proportion of cases treated, 2003 - 2015

• RRs of the proportion of notified cases that were treated between 2003 and 2015, with 2003 as the reference year. The bars represent the 95% go.ac.nz/infectious-disease

34

Imputed, adjusted model (Stata)

GLM regression

Imputed dataset

Outcome

 mi estimate, esampvaryok: glm died antibiotics sex i.age i.eth2 NZDep10 rash septic meningitis duration24 mi_distancekm year12 if seengp==1, fam (poisson) link (log) vce(robust)

Confounders

GP only

Exposure Exposure

NZDep distribution 1995 - 2006

