

Otago Spotlight Series Infectious Disease Research

Te Whare Wänanga o Otāgo

Rheumatic Fever: How can we end this terrible disease of poverty?

Michael Baker University of Otago, Wellington michael.baker@otago.ac.nz

Outline

- ARF/RHD
 - Background
 - Epidemiology

Studies of mechanisms & risk factors

- RF Risk Factors study
- GAS skin & throat infection linkage study

Studies of interventions

- Probiotic intervention trial
- **RFPP Evaluation**
- RF progression study
- Healthy housing referral services

Implications for the future

otago.ac. re/infruitures interventions & research

Rheumatic heart disease

Strep throat

Rheumatic fever

Streptococcus pyogenes = Group A Streptococcus (GAS) Gram positive cocci completely sensitive to penicillin ~10% are asymptomatic carriers

Scarlet fever

Streptococcal toxic shock

Cellulitis and necrotizing fasciitis

GAS disease

Diseases following GAS:

Superficial infection

- Pharyngitis
- Impetigo, Pyoderma

Invasive diseases

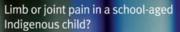
- Septicaemia
- Pneumonia, osteomyelitis...
- Necrotising fasciitis

Toxin mediated diseases

- Scarlet fever
- Streptococcal toxic shock syndrome

Post-streptococcal autoimmune sequelae

• Acute rheumatic fever (ARF) / Rheumatic heart disease (RHD)


otago.ac.ⁿz/iRost-streptococcal glomerulonephritis

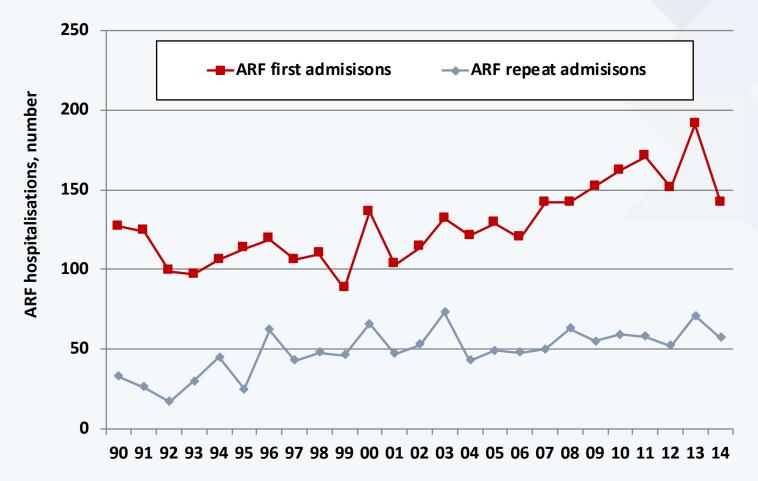
Key features of ARF

- May develop 2-4 weeks after a sore throat (pharyngitis) or possibly skin infection
- May be asymptomatic or difficult to diagnose
- Painful swelling of joint(s)

Assume acute rheumatic fever until proven otherwise

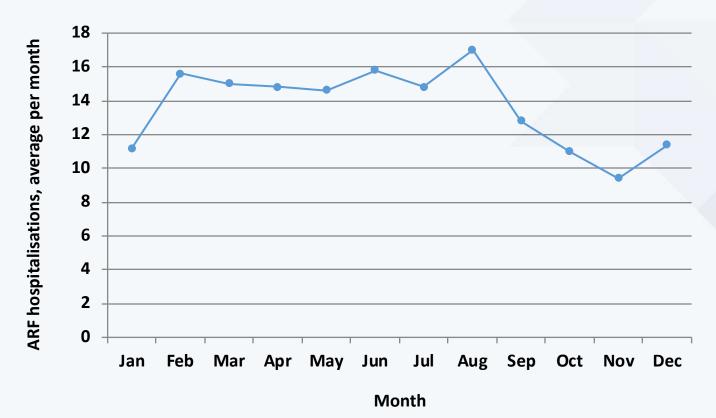
Typical presenting symptoms:

- fever, malaise
- one or more painful joints
- unable to walk or use a limb
- unusual movements (chorea)

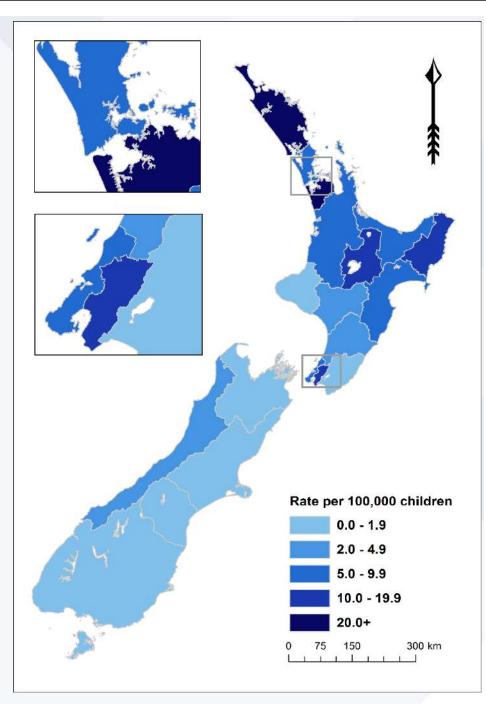


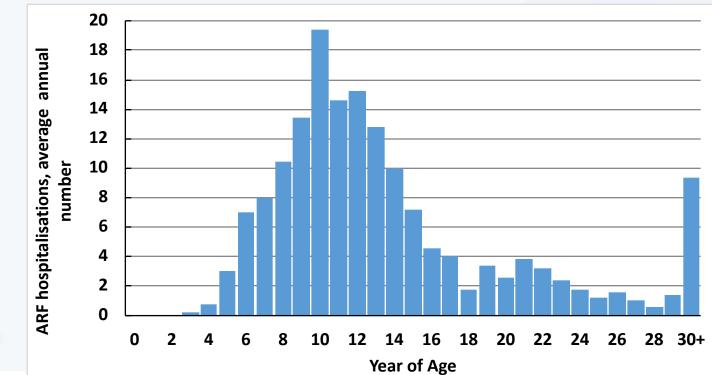
Further information: Primary Clinical Care Manual or visit the website: www.health.qld.gov.au/pccm

- Fever, tiredness, stomach ache (mesenteric adenitis)
- Sometimes a rash or lumps under the skin (immune depositions)
- Fidgety, unusual movements (chorea)
- Evidence of heart murmurs signals RHD

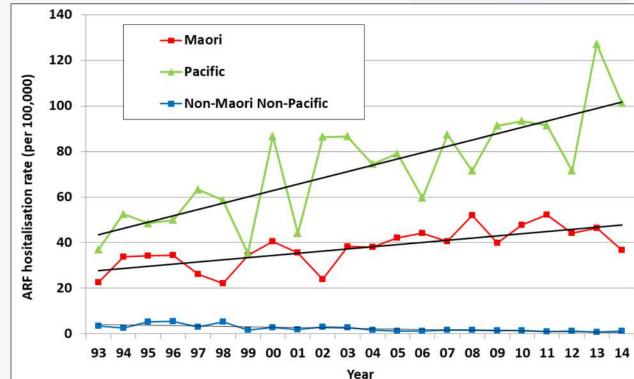


Incidence of ARF – Rate = 3.4/100,000 in 2014


Incidence by month – monthly average 2010-14 Modest Autumn–Winter peak

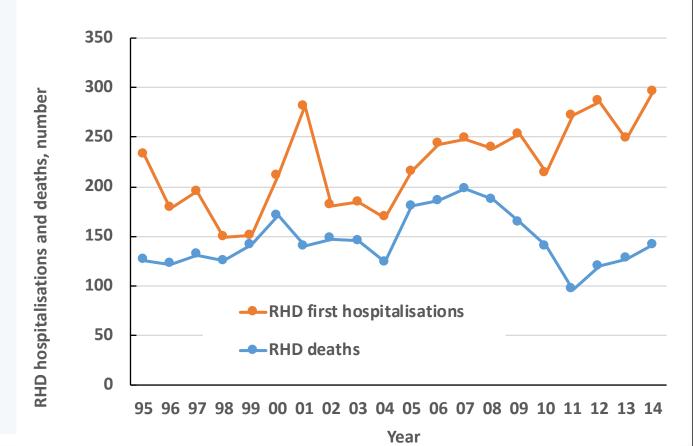

ARF concentrated in North Island (97.5% of cases in those <20 years, 2010-14)

11 (out of 20) District Health Boards with rates of 5.0 per 100,000 or higher accounted for 94% cases

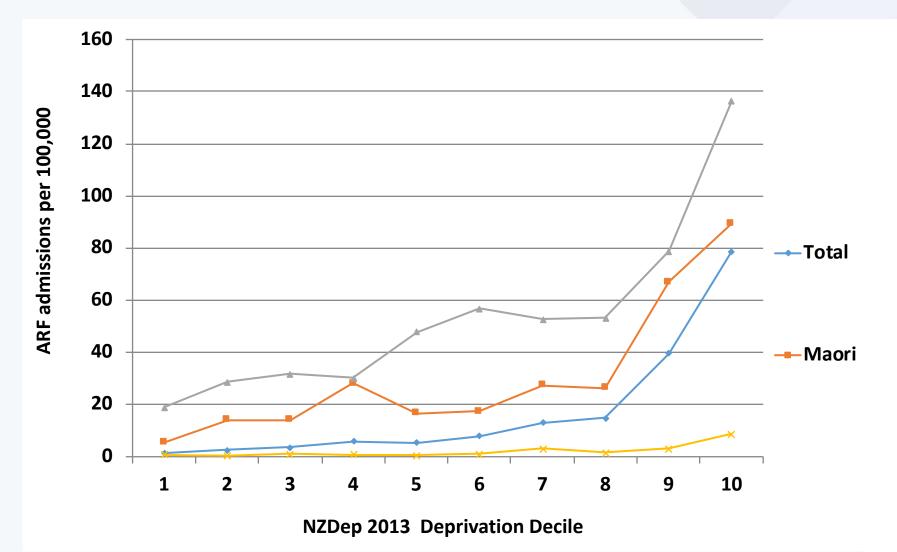

ARF incidence by age – average by single year, 2010-14 82.4% <20 years of age (12.0 per 100,000) Median age 12 years Males 56.0% of cases

Incidence by ethnicity aged <20 years, 2010-14 Māori 54.0%, RR 29.7 (vs. European/Other) Pacific, 38.0%, RR 63.9 (vs. European/Other)

European/Others 7.0%



RHD 2010-2014


263 first hospitalisations per year

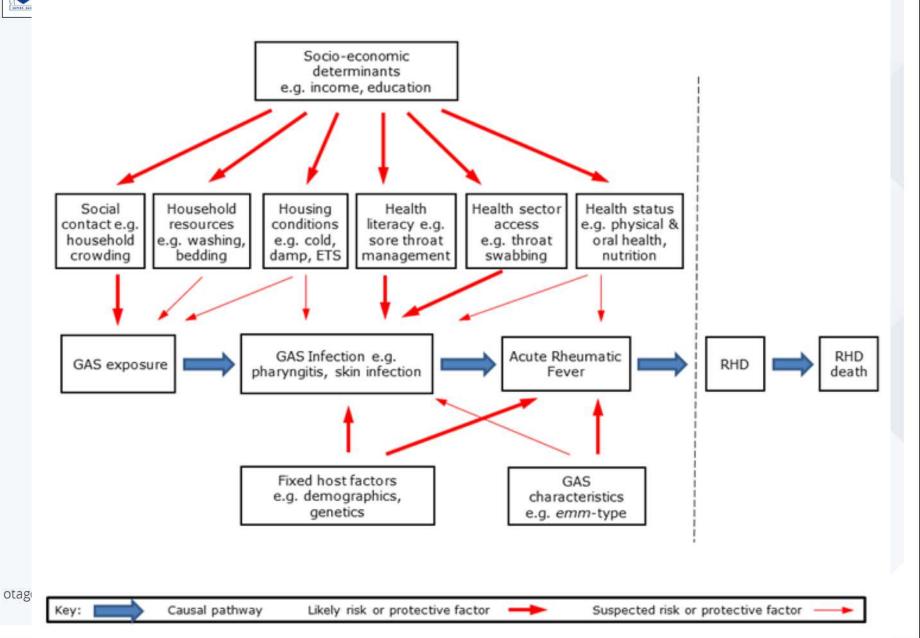
125 RHD deaths per year

Incidence of ARF by ethnicity and deprivation (NZDep13)

NZ RF Risk Factors Study

Rheumatic Fever RISK FACTORS STUDY

- Investigators: Michael Baker, Jason Gurney, Jane Oliver, Nikki Moreland, Deborah Williamson, Nevil Pierse, Nigel Wilson, Tony R Merriman, Teuila Percival, Colleen Murray, Catherine Jackson, Richard Edwards, Lyndie Foster Page, Florina Chan Mow, Jane Zhang, Barry Gribben, Diana Lennon
- Funding: HRC
- Stage: Data analysis


Goal of Risk Factors Study

To identify modifiable risk factors for ARF to inform prevention policy & interventions

Distal risks
factors /
DeterminantsProximal risk
factorsARF/RHDImage: Construction of the second se

Risk Factors under investigation

OTÁGO

Methods

Case-control study

 119 ARF cases (definite & probable) after excluding 19 cases that didn't meet case definition

Compared with:

• 357 closely matched controls (time, age, ethnicity, deprivation, DHB, gender) ie 3 per case

Methods

Data collection

- Questionnaire completed in a face-to-face interview by Māori and Pacific interviewers
- A subset of cases and controls also provided blood for additional testing, including ferritin, vitamin D, immunological markers, genetics; hair nicotine
- Linked data on dental health, previous hospitalisations, housing, schools attended

Results: Proximal exposures

Throat infection in previous 4 weeks

	Case		Control	
	n	%	n	%
Yes	59	49.5	101	28.3
No	55	46.2	253	70.9
Don't Know	5	4.2	3	0.8
		UCL	LCL	р
Conditional aOR	2.52	1.60	3.99	<0.003

Sore throats and rheumatic fever

Results: Proximal exposures

throat infection

Conditional aOR

Skin infection in previous 4 weeks

Skin abscess

Skin abscess

Cellulitis

School sore

School sore

	Cas	se	Co	ontrol	
	n	%	n	%	
Yes	25	21.0	36	10.1	
No	93	78.2	321	89.9	
Don't Know	1	0.8	0	0.0	
		UCL	LCL	р	
Conditional aOR	2.30	1.30	4.07	0.004	
Skin infection without throat infection		UCL	LCL	р	
Conditional aOR	1.25	0.50	3.09	0.631	
Skin infection with					

UCL

2.88

13.13

LCL

59.96

р

0.009

Results: Proximal exposures

Scabies in previous 4 weeks

	Case		Co	Control	
	n	%	n	%	
Yes	7	5.8	5	1.4	
No	112	94.1	349	97.8	
Don't Know	0	0	3	0.8	
		UCL	LCL	р	
Conditional aOR	5.44	1.62	18.24	0.006	

Scabies

Burrows (arrows point to mites)

) Scabies on hand

Scabies between fingers

Scabies on hand

Results: Household crowding

Bedroom deficit of

one or more (Canadian National Occupancy Standard)

	Case		Control	
	n	%	n	%
0 bedroom deficit	86	72.4	320	89.7
1 Bedroom deficit	22	18.5	22	6.2
2 Bedroom deficit	7	5.9	13	3.6
3 or more Bedroom deficit	4	3.4	2	0.6
Conditional aOR	3.78	2.13	6.72	<0.0001

Results: Bed sharing

Usually share a bed in the last 4 weeks?

	Case		Control	
	n	%	n	%
Yes	64	53.8	137	38.4
No	55	46.2	218	61.1
Don't Know			2	0.6
Conditional aOR	2.31	1.44	3.69	0.001

Does anyone sleep in case/control's bed when they aren't using it (**'hot bedding'**)?

	Case		Control	
	n	%	n	%
Yes	21	17.6	17	4.8
No	98	82.4	338	94.7
Don't Know				
Conditional aOR	4.40	2.15	9.03	<0.0001

Results: Housing tenure & quality

Housing tenure – proportion living in rental housing

	Case		Control	
	n	%	n	%
Rental	93	78.2	225	63.0
Owned by occupant	16	13.5	100	28
Don't now	10	8.4	32	9
Conditional aOR	3.65	1.81	7.02	0.002

Housing quality –

Self rating on 5point scale

	Case		Control	
	n	%	n	%
Poor, Very poor	31	26.0	24	6.7
Average or better	88	73.9	332	93
Don't Know			1	0.3
Conditional aOR	5.17	2.70	9.90	<0.0001

Results: Household damp

Household damp & mould based on 3 questions:

- Mould on the walls or ceilings in bedrooms or living rooms in the last 12 months
- Damp walls or ceilings in bedrooms or living rooms the last 12 months?
- Damp or musty smell in bedrooms or living rooms over the last 12 months?

	Case		Control	
	n	%	n	%
Yes	75	63.0	135	37.8
No	44	37.0	221	61.9
Don't Know				
Conditional aOR	3.47	2.10	5.74	<0.0000

Results: Household cold

Household cold based on sum of 4 questions:

- In winter, is your home colder than you would like?
- In winter, do you put up with feeling cold inside to save on heating costs?
- Did case/control need to share a sleeping room just to stay warm in the last 4 weeks?
- Has your house been so cold that you
 shivered in the last 4 weeks?

	Case		Control	
	n	%	n	%
Yes	90	75.6	221	62
No	29	24.4	134	37.5
Don't Know			2	0.6
Conditional aOR	2.16	1.3	3.57	0.003

Results: Household washing

resources

Composite measure based on 2 questions:

- Does case/control sometimes have a cold or lukewarm bath/shower because there is not enough hot water? (shown here)
- Does case/control sometimes have to put off having a bath/shower because there is not enough hot water?

	Case		Control	
	n	%	n	%
Yes	30	25.2	40	11.2
No	89	74.8	315	88.2
Don't Know			2	0.6
Conditional aOR	3.11	1.66	5.81	<0.00001

Results: Nutrition

Sugar sweetened drinks -How many sugar-sweetened drinks (including fruit juice), but not including diet drinks, does case/control normally drink per day?

Vegetables - On average, how many servings of vegetables eaten per day?

	Case		Control	
	n	%	n	%
1 or more	70	58.7	131	36.9
None	49	41.2	220	61.6
Don't Know				
Conditional aOR	2.43	1.55	3.81	<0.0000

	Case		Control		
	n	%	n	%	
1 or less	64	53.8	143	40.1	
2 or more	55	46.2	214	60	
Don't Know					
Conditional aOR	1.96	1.25	3.08	0.003	

Results: Family History of RF

Relatives ever diagnosed with RF or RHD?

	Case		Control		
	n	%	n	%	
1 or more	60	52.2	76	21.7	
none	55	47.8	274	78.3	
Don't Know	4	3.4	7	2.0	
		UCL	LCL	р	
Conditional aOR	4.22	2.57	6.94	<0.000	

Results: Health service access

Barriers to primary care access:

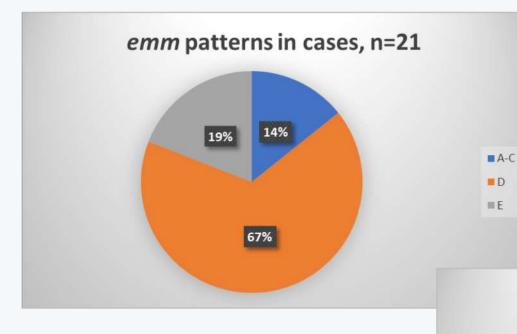
- Unable to be seen within 24 hrs
- Didn't visit because of cost
- Didn't visit because of transport
- Didn't visit because of childcare
- Didn't fill prescription because of cost

	Case		Control		
	n	%	n	%	
2-5 barriers	27	22.6	51	14.3	
0 or 1 barrier	92	77.3	306	85.8	
		UCL	LCL	р	
Conditional aOR	1.73	1.00	2.98	0.050	

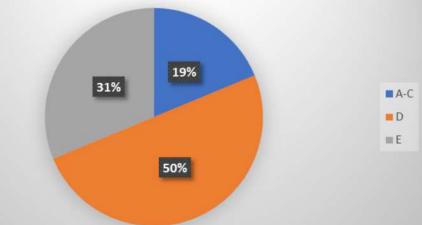
Results: Health service access

Current school has a throat swabbing programme for rheumatic fever?

	Case		Control		
	n	%	n	%	
Yes	59	49.6	138	38.7	
No	37	31.1	144	40.3	
Don't Know/	23	18.5	75	21	
missing	23	10.5	/5	21	
		UCL	LCL	р	
Conditional aOR	2.36	1.30	4.28	2.36	

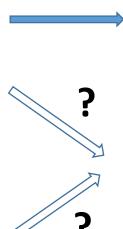


Results: Multivariate


Variable	Units	OR	LCL	UCL	Pr(> z)
Family History RF	y/n	6.02	2.95	12.27	<0.001
Mould Score	0to9	1.14	1.001	1.23	0.0475
Limited hot water	0to3	1.63	1.02	2.64	0.04
Household Crowding	People/ room	3.79	1.82	7.92	0.0004
Sugar Sweetened Beverages	0to9	1.47	1.18	1.83	0.0005

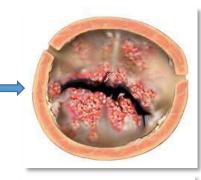
Organism factors

emm patterns in controls, n=16



Role of skin infection

Conventional wisdom



GAS (Strep) sore throat

Acute Rheumatic fever (ARF)

Rheumatic heart disease (RHD)

GAS skin infection eg Impetigo

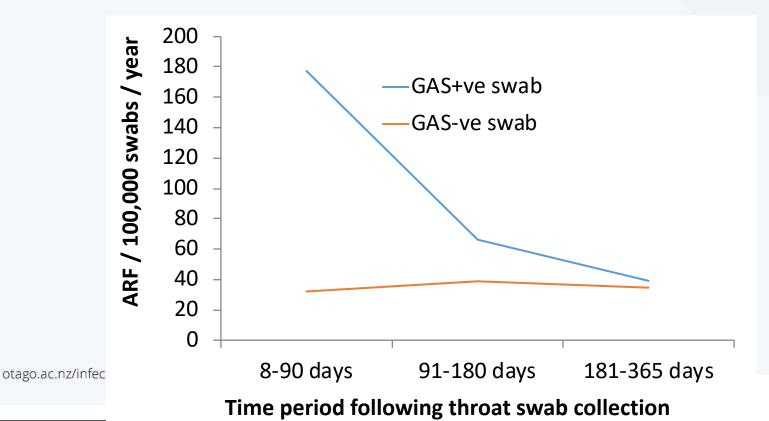
Acute Post Streptococcal Glomerulonephritis (APSGN)

Role of Group C/G Streptococci

Methods

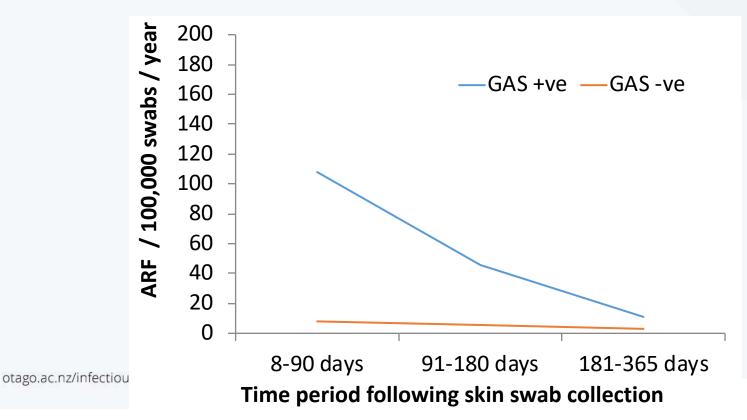
GAS exposure data sources

- Laboratory throat swab and skin swab test data, community labs (Labtests), Auckland Region (pop= 1.5 million), 2009-2016
- Hospitalisations for specific clinical conditions (eg Strep pharyngitis, skin infections) NZ (pop=4.5 million), 2001-15


• Disease outcome data sources

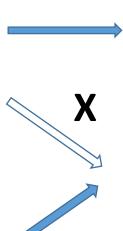
- Hospitalisation data on first admissions for ARF (ICD.10 I00, I01, I02) APSGN (ICD.10 N00, N05)
- Linked to exposure using unique patient number (encrypted NHI)

<u>ARF</u> following GAS +ve throat swab


- ARF cases (N=155) in 365 days following GAS+ve throat swabs (N=163,534) vs. risk ARF (N=378) following GAS & Group C/G -ve throat swabs (N=1,029,680)
- All ages, 8-90 days, RR=**5.53** (95%CI **3.96-7.72**)
 - Total 5-19 years, 8-90 days, RR=8.57 (95%CI 4.27-17.23)
 - Māori 5-19 years, 8-90 days, RR=7.32 (95%CI 2.14-24.99)
 - Pacific 5-19 years, 8-90 days, RR=7.28 (95%CI 3.09-17.16)

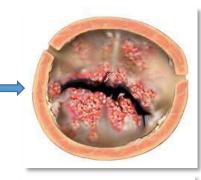
<u>ARF</u> following GAS +ve <u>skin swab</u>

- ARF cases (N= 23) in 365 days following GAS +ve skin swab (N=53 544) vs. risk ARF (N= 18) following GAS & Group C/G -ve skin swabs (N= 354 200)
- All ages, 8-90 days, RR= **14.33** (95% CI **5.45-37.71**)
 - Total 5-19y olds, 8-90 days: RR 5.95 (95% Cl 2.06-17.08)
 - Māori 5-19y olds, 8-90 days: RR 7.34 (95% CI 0.35-152.82)
 - Pacific 5-19y olds, 8-90 days: RR 2.33 (95% CI 0.76-7.12)



Conclusions and Implications

Revised wisdom?



GAS (Strep) sore throat

Acute Rheumatic fever (ARF)

Rheumatic heart disease (RHD)

GAS skin infection eg Impetigo

Acute Post Streptococcal Glomerulonephritis (APSGN)

Χ

Role of Group C/G Streptococci

Evaluating RF Interventions

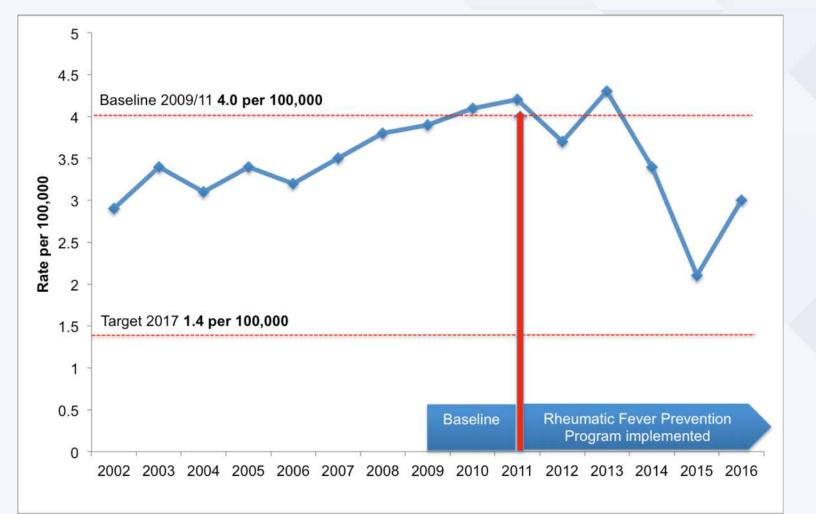
Interventions

- RFPP evaluation
- BLIS (probiotic) trial
- Secondary prophylaxis and disease progression
- Healthy housing referral (well homes)

Evaluation of Rheumatic Fever Prevention Programme (RFPP) – sore throat management component

- Investigators: Evaluation team: Susan Jack, Michael Baker, Debbie Williamson, Yvonne Galloway, Nevil Pierse, Richard Milne, Graham Mackereth, Jane Zhang, Jane Oliver. Advisors: Jonathan Carapetis, Andrew Steer, Paul Scuffham, Catherine Jackson, Matire Harwood, Dianne Sika-Paotonu, Murray Tilyard
- Funding: NZ Ministry of Health
- Stage: Report and published paper

Source: Jack et al. Primary Prevention of Rheumatic Fever in the 21st Century: Evaluation of a National Programme. Int J Epi 2018.


The main activity of the RFPP is sore throat treatment

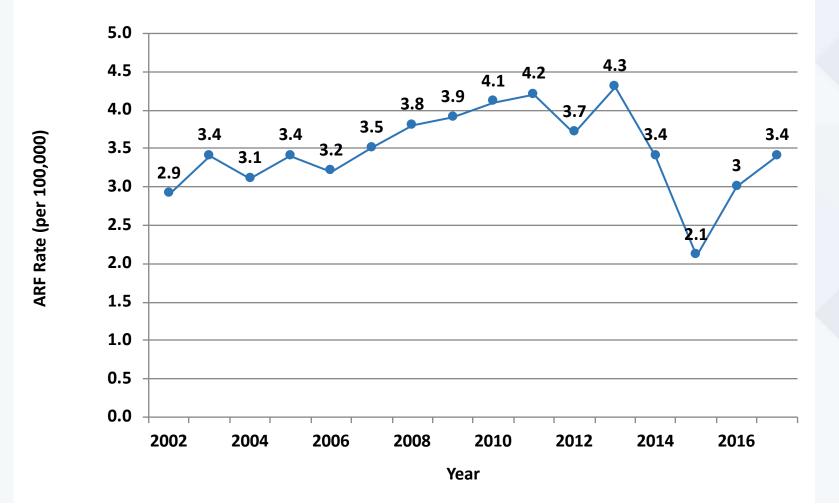
- School-based throat swabbing programme in 230 schools across 10 North Island DHBs
- Primary care programme with 108 free drop-in sore throat clinics
- Aims to improve management of sore throats in high-risk children across the country.
- Increases health literacy amongst professionals and the public

Total first episode RF hospitalization rates by year

Source: Jack et al. Primary Prevention of Rheumatic Fever in the 21st Century: Evaluation of a National Programme. Int J Epi 2018.

Evaluation of RFPP Effectiveness analysis findings 2012–2016

Scenario	Number of cases exposed/person-days exposed	Number of cases not- exposed/person- days not-exposed	ARF decline (%)	95% CI
Schools in all 10 RFPP DHB regions with a school-based service	123/ 68,465,350	54/ 23,093,207	23.2	-5.8 to 44.2
Schools in Counties Manukau with a school-based service	52/ 32,165,368	30/ 9,945,963	46.4	16.0 to 65.8
Schools in the nine other DHB regions with a school-based service	71/ 36,299,982	24/ 13,147,244	-7.1	-70.2 to 32.5


Source: Jack et al. Primary Prevention of Rheumatic Fever in the 21st Century: Evaluation of a National Programme. Int J Epi 2018, accepted.

- The RFPP school-based sore throat component is expensive, however it may be justified for areas with:
 - concentrated populations of high risk children
 - a well-run high-coverage programme
 - possibly also with management of skin infections
- Other approaches are needed where high risk populations are dispersed or for lower risk populations

Source: Jack et al. Primary Prevention of Rheumatic Fever in the 21st Century: Evaluation of a National Programme. Int J Epi 2018.

Source: NZ Ministry of Health. National incidence of ARF, based on first hospitalisations for ARF

Trial of probiotics to prevent ARF

- Preventing GAS pharyngitis with BLIS-producing oral probiotic
- Bacteriocin-Like Inhibitory Substances (BLIS) naturally produced by *Streptococcus salivarius* commensal of the human tongue
- John Tagg observed that children colonised with BLIS-producing *S. salivarius* less likely to acquire *S. pyogenes*

Trial of probiotics to prevent ARF

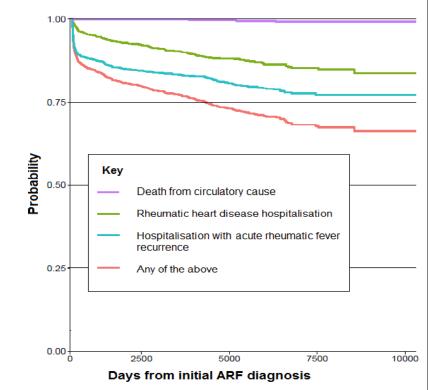
Oral BLIS Trial

- Investigators: Julian Crane, Michael Baker, Debbie Williamson, Nevil Pierse, Kristin Wickens, Tosh Stanley, Ramona Tiatia
- Method: Pragmatic trial with 1314 children participating in school based sore throat management programme quasi-randomized to receive either K12 (2.5 x 109 cfu's per lozenge) or placebo lozenges and continued observed daily treatment (in the school week, during school time) for one school year.

Trial of probiotics to prevent ARF

Oral BLIS Trial

- Non-significant 11.2% reduction in positive swabs amongst children receiving K12. greater for older children, aged 7-9 years, 15.6%, and for children 10 years and older, 30.2%.
- Conclusion: S. salivarius (K12) had modest nonsignificant effects on culture-positive sore throats when given at school, during the school day. routine use of this probiotic in the prevention of pharyngitis associated with GAS detection is not supported.


Source: Doyle, et al. The Effect of the Oral Probiotic Streptococcus salivarius: (K12) on Group A Streptococcus Pharyngitis: A Pragmatic Trial In Schools. Pediatric Infect ^{otago.} Dis J 2018; 37: 619–23

ARF Progression

- 2,182 initial ARF hospitalisations 1989-2012 identified using ICD coding in the National Minimum Dataset (NMDS)
- Retrospective analysis identified cases first hospitalised with RHD (NMDS) between 2010-2015 when aged <40 years

ARF Progression

Progression risk

- 14.9% experienced ARF recurrence, 11.2% developed RHD, 8 cases died of cardiovascular causes
- Most (75.6%) of 2,182 cases survived & not hospitalised with recurrence/ RHD

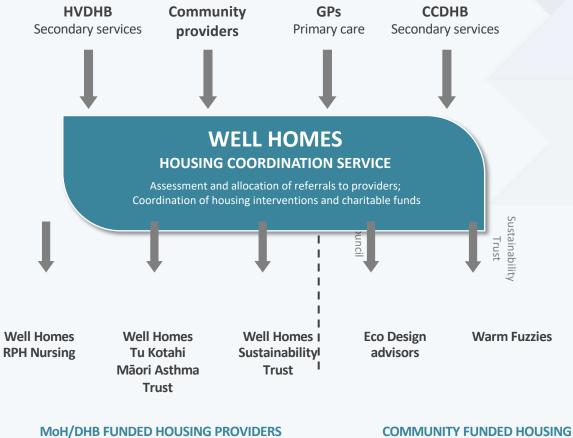
Progression risk by population group

- Female higher risk disease progression, OR: 1.27 (1.05-1.54), shorter time (HR: 1.20 (1.02-1.42).
- Māori higher risk disease progression (ORs: 1.56, 1.12-2.22), shorter time (HRs 1.65, 1.21-2.25)
- Pacific higher risk progression (OR 1.67, 1.18-2.39) and shorter time (HR 1.75, 1.28-2.41) compared with European/Others

^c Source: Oliver et al. Progression of acute rheumatic fever to recurrence, rheumatic heart disease and death in New Zealand children and youth: A cohort study. Submitted

ARF Progression

 The majority (65.1%) of new RHD cases aged <40 years, admitted 2010-15, had never been previously hospitalised with ARF in NZ



SHELTER (Safe Housing Ensuring Long Term Effective Recovery)

- Aims to quantify effects of multifaceted housing intervention
- Well Homes is a housing coordination service supported by Regional Public Health Service, Tu Kotahi Maori Asthma Trust, and Sustainability Trust.
- Whānau referred to Well Homes visited by a housing assessor, who identifies potential housing issues, provides education on healthy housing, referral for assistance

Well Homes REFERRAL SOURCES

PROVIDERS

Well Homes is a free service that may be able to help your whanau with:

MOULD CLEANING KITS

MSD/WORK & INCOME ASSISTANCE

OTHER - I.E. HEALTH OR SOCIAL REFERRALS

SOCIAL HOUSING RELOCATION

VENTILATION

Please phone us on 0800 675 675

SHELTER Study

- Evaluation uses hospitalisation data to measure the effects of receiving the Well Homes intervention on health of children previously hospitalised due to health conditions related to housing
- Investigators: Nevil Pierse, Michael Baker et al
- Funding: HRC Programme Grant (Housing and Health/He Kainga Oranga)

Interventions to reduce RF

- **1.** Sustained improvement in the home environment of children
- Reduce bed sharing by children a 'bed for every child'.
- Reduce household crowding adequate supply of affordable, suitable housing eg construction of social housing and increase security of tenure
- Sustained improvement in housing quality reduce damp and mould, insulation and heating, housing warrant of fitness
- Address fuel poverty to improve energy efficiency, reduce costs of home and water heating
- Reduce exposure to tobacco smoke in homes and cars, and reducing respiratory infections more generally

2. Revise the population approach to GAS infection management - Could include:

- More intensive, targeted approach based on family history of rheumatic fever, ethnicity, ancestry, age
- Treatment of both sore throats and skin infections
- Use of injectable penicillin and potentially prophylactic treatment
- Scabies treatment

Future Interventions to reduce RF

- **3.** Improve the diet of children The RF Risk Factors study provides further evidence to support reducing consumption of sugar sweetened beverages
- **4. Improve management of children with ARF** Better diagnosis, tracking, and delivery of Benzathine Penicillin G (BPG) or alternatives
- 5. Vaccination Support international collaboration to develop and trial Strep A vaccine

Future research & evaluation

- GAS infection study in Auckland (HRC) Focus on role of skin infection & effectiveness of oral antibiotics
- RF Endgame project (HRC) considering effectiveness & economics of full range of interventions
- Continue evaluation of healthy housing referral programmes (HRC) – Well Homes programme
- Consider trial of intensive targeted intervention for high risk populations – Screening questions, more intensive management

Rheumatic fever - a disease of poverty and of politics

Dame Tariana Turia – Former leader of Maori Party and advocate for •RF•prevention Jacinda Ardern – PM and Minister of Child Poverty reduction

