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This document! introduces model specification for secr 5.2.

What do we mean by ‘models’ here?

A family of capture-recapture models (e.g. SECR) may include submodels that constrain variation in core
parameters and include the effects of covariates. The language of generalised linear models is convenient
for describing submodels (e.g., Huggins 1989, Lebreton et al. 1992). Each parameter is treated as a linear
combination of effects on its transformed (‘link’) scale. This is useful for combining effects because, given a
suitable link function, any combination maps to a feasible value of the parameter. The logit scale has this
property for probabilities in (0,1), and the natural log scale works for positive parameters i.e. (0, +Inf).

Submodels for spatially explicit capture-recapture in secr are defined symbolically using the R formula
notation. A separate linear predictor is used for each core parameter. Core parameters are ‘real’ parameters
in the terminology of MARK, and secr uses that term to reduce confusion. Four real parameters are
commonly modelled in secr: D (density), g0, sigma and z. Only the last three real parameters, the ones
jointly defining detection probability as a function of location, can be estimated directly when the model
is fitted by maximizing the conditional likelihood. D is then a derived parameter. ‘z’ is a shape parameter
used only when the detection function requires three parameters. Other real parameters are used for acoustic
models (beta0, betal; secr-sound.pdf) and for the mixture proportion (pmix) in finite mixture models
(secr-finitemixtures.pdf).

1This material was once included in the help pages and an appendix to secr-overview.pdf


https://www.otago.ac.nz/density/pdfs/secr-sound.pdf
https://www.otago.ac.nz/density/pdfs/secr-finitemixtures.pdf

Each real parameter has a linear predictor of the form
y = X * beta,

where y is vector of parameter values on the link scale, X is a design matrix of predictor values, beta is a
vector of coefficients, and ‘*’ stands for matrix multiplication. The elements of beta are coefficients to be
estimated when we fit the model; in MARK these are called ‘beta’ parameters’ to distinguish them from
the ‘real’ parameter values in y. X has one column for each element of beta. To repeat: there is an X and
a beta for each real parameter; elsewhere in the documentation we use ‘beta’ to refer to the vector got by
concatenating all the parameter-specific beta’s. We now describe design matrices in more detail.

[Some variations on the basic SECR model do not fit easily into this framework. An example is the choice of
detection function (halfnormal vs hazard-rate). These are treated as higher-level choices.]

Design matrices

The design matrix contains a column of 1’s (for the constant or intercept term) and additional columns as
needed to describe the effects in the submodel. Depending on the model, these may be continuous predictors
(e.g. air temperature to predict occasion-to-occasion variation in g0), indicator variables (e.g. 1 if animal i
was caught before occasion s, 0 otherwise), or coded factor levels.

Within secr.fit, a design matrix is constructed automatically from the input data (capthist) and the model
formula (e.g. model$g0) in a 2-stage process. First, a data frame is built containing ‘design data’ with one
column for each variable in the formula. Second, the R function model.matrix() is used to construct the
design matrix. This process is hidden from the user. The design matrix will have at least one more column
than the design data, and more if the formula includes interactions or factors with more than two levels. For
a good description of the general approach see the documentation for RMark (Laake and Rexstad 2008). The
key point is that the necessary design data can be either extracted from the inputs (capthist and mask) or
generated automatically (e.g. indicator of previous capture, mentioned in the previous paragraph).

Real parameters fall into two groups: density (D) and detection (g0, lambda0, sigma and z). Density and
detection parameters are subject to different types of effect, so they use different design matrices and are
described separately in the following sections.

Detection Models

For spatially explicit capture-recapture estimation of a closed population, we model the detection of individual
i on occasion s at detector k. Given n observed individuals on S occasions at K detectors there are therefore
n.S.K detection probabilities of interest. We can think of these as elements of a 3-dimensional array. We
are also interested in the detection probabilities of unobserved individuals, but these are estimated only by
extrapolation from those observed so we do not consider them in the array.

In a null (constant) model, all n.S.K detection probabilities are the same. The conventional sources of
variation in capture probability (Otis et al. 1978) appear as variation in the n dimension (‘individual
heterogeneity’ h), in the S dimension (‘time variation’ t) or as a particular interaction in these two dimensions
(‘behavioural response to capture’ b). Combined effects are possible.

Spatially explicit capture-recapture introduces two sorts of additional complexity. Firstly, detection probability
is no longer a scalar (even for a particular animal, occasion and detector combination); it is described by
the detection function, which may have two parameters (e.g. g0, sigma for half-normal), three parameters
(e.g. g0, sigma, z for the hazard-rate function), or potentially more.

Secondly, many more types of variation are possible. Any of the parameters of the detection function may
vary with respect to individual (i), occasion (s) or detector (k). For example, there may be a covariate
associated with trap location that influences detection probability, and this effect may vary between occasions
(see Ttimevaryingcov).



The full design matrix for each detection submodel has one row for each combination of ¢, s and k (animal,
occasion and trap). Allowing a distinct probability for each animal (the n dimension) may seem excessive,
as continuous individual-specific covariates are feasible only when a model is fitted by maximizing the
conditional likelihood (cf Huggins 1989). However, the full n.S.K array is convenient for coding both
group membership (Lebreton et al. 1992, Cooch and White 2008) and experience of capture, even when
individual-level heterogeneity cannot be modelled.

Variation between sessions and between latent classes in a finite mixture adds two further dimensions: in
principle there is an n.S.K array for each latent class (classes are numbered 1..M), and an n.S.K.M array for
each session (sessions are numbered 1..R). The full design matrix has n.S.K.M.R rows. We do not expand
on this here.

Potential effects on detection parameters

Effects on parameters of detection probability are specified with R formulae using standard variable names
or named covariates supplied by the user. The formula for each detection parameter (g0, sigma, z) may be
constant (~ 1}, the default) or some combination of terms in standard R formula notation (see ?formula).

Variable Description Data source Dim

t time factor (one level for each ~ automatic S
occasion)

T time trend (integer covariate automatic S
0:(S-1))

tecov default time covariate timecov][,1] S

kcov default trap covariate covariates (traps)[,1] K

b learned response capthist n.S

B transient (Markovian) response  capthist n.S

bk animal x site learned response capthist n.S.K

Bk animal x site transient response capthist n.S.K

k site learned response capthist S.K

K site transient response capthist S.K

g group see below n

h2 2-class mixture - 2

h3 3-class mixture - 3

session session factor (one level for automatic R
each session)

Session session number 0:(R-1) automatic R

ts marking vs sighting occasions automatic S

tt capture-recapture vs telemetry automatic S
occasions

[user] individual covariate covariates (capthist) n

[user] session covariate sessioncov R

[user] time covariate timecov S

[user] detector covariate covariates (traps) K

Detection functions

[to be written]

Learned responses

The classic learned response is a step change following first detection; this is implemented with the predictor
variable b which is FALSE up to and including the time of first capture and TRUE afterwards. An alternative
is a response that depends only on detection at the last opportunity (B).



The site-specific learned and transient responses bk and Bk imply that an individual becomes trap happy or
trap shy in relation to a particular detector, as in the wolverine example of Royle et al. (2011).

Groups

Groups (g) are defined by the interaction of the capthist categorical (factor) individual covariates identified in
secr.fit argument groups. Groups are redundant with conditional likelihood because individual covariates
of whatever sort (continuous or categorical) may be included freely in the model.

Individual heterogeneity

Individual heterogeneity (h in the notation of Otis et al. 1978) may modelled by treating any detection
parameter as a 2-part or 3-part finite mixture e.g. g0 ~ h2. See secr-finitemixtures.pdf.

Covariates

Any other variable name appearing in a formula is assumed to refer to a user-defined predictor, also known as
a ‘covariate’. These will be interpreted by searching for name matches in the dataframes of individual, session,
time and trap covariates, in that order (remembering that individual covariates other than groups are allowed
only when the model is fitted by maximizing the conditional likelihood). The type of the predictor is inferred
from the data frame in which it first occurs. Thus if the model included the formula ‘g0 ~ wetness’, and
‘wetness’ was a column in the data frame of time covariates (timecov), then ‘wetness’ would be interpreted
as a time covariate, and a column of the same name in covariates(traps) would be ignored. In this case,
renaming the column in timecov would expose the traps covariate, and ‘wetness’ would be interpreted as an
attribute of detectors, rather than sample intervals. This is a good reason to give covariates distinctive names!

The design matrix for detection parameters may also be provided manually in the argument dframe. This
feature requires some care and is better avoided.

The submodels for g0 (lambda0), sigma and z are named components of the model argument of secr.fit.
They are expressed in R formula notation by appending terms to ~. The name of the response may optionally
appear on the left hand side of the formula (e.g. g0 ~ b).

# constant (null) model
list(g0 = ~1, sigma = ~1)

# both detection parameters change after first capture
list(g0 = ~b, sigma = ~b)

# group-specific parameters; additive time effect on g0
# groups are defined via the groups argument of secr.fit
list(g0 = ~ g + t, sigma = ~ g)

# g0 depends on trap-specific covariate
list(g0 = ~ kcov)

The parameter z was previously called ‘b’; it was renamed to avoid confusion with the predictor b used in a
formula for a learned trap response.

Spatial variation not allowed

The structure of secr precludes certain types of model. secr does not allow spatial variation in detection
parameters (g0, lambda0, sigma etc.) to be modelled directly (i.e. as a function of habitat mask covariates).
This applies whether the variation is continuous or discrete (e.g. a function of habitat class). However, there
is a workaround for spatially varying sigma, as shown in secr-noneuclidean.pdf.


https://www.otago.ac.nz/density/pdfs/secr-finitemixtures.pdf
https://www.otago.ac.nz/density/pdfs/secr-noneuclidean.pdf

Density Models

SECR can fit an inhomogeneous Poisson model to describe the distribution of animals. This may be viewed
as a surface of expected density across the study area.

The log likelihood is evaluated in secr.fit by summing values at points on a ‘habitat mask’ Each point in
a habitat mask represents a grid cell of potentially occupied habitat (their combined area may be almost any
shape and may include disjunct patches).

The density model may take one of two forms: a user-provided R function or a linear model on the link
scale (see the link argument of secr.fit; the default link for density is ‘log’). User-provided functions are
described in the accompanying vignette secr-densitysurfaces.pdf. Here we focus on linear models.

The full design matrix for density (D) has one row for each point in the mask. The design matrix has

one column for the intercept (constant) term and one for each predictor. Predictors may be based on

Cartesian coordinates (e.g. ‘x’ for an east-west trend), a continuous habitat variable (e.g. vegetation cover) or

a categorical (factor) habitat variable. Predictors must be known for all points in the mask (non-habitat
RN B4

excluded). The variables ‘x’; ‘y’, x2’) ‘y2’, ‘xy’, ‘session’, ‘Session’ and ‘g’ are provided automatically. Other
covariates should be named columns in the ‘covariates’ attribute of the habitat mask.

Variable Description Data source

X x-coordinate automatic

y y-coordinate automatic

x2 x-coordinate”2 automatic

y2 y-coordinate”2 automatic

Xy x-coordinate * y-coordinate automatic

session session factor automatic

Session  session number 0:(R-1) automatic

g group factor automatic

[user] mask covariate covariates(mask) as named in formula

The submodel for density (D) is a named component of the list used in the model argument of secr.fit. It
is expressed in R formula notation by appending terms to ~.

Density surfaces resulting from the fitting of SECR models are manipulated in secr as objects of class
Dsurface. See the vignette secr-densitysurfaces.pdf for details and examples, including functions for prediction
and plotting.

When secr.fit is called with CL = TRUE a relative density model is fitted (secr >= 5.2.0).

See also ?secr.fit, ?Dsurface, ?predictDsurface, plot.Dsurface.

D=~1 # constant density (homogeneous Potsson)
D=~x # east-west trend
D = ~ cover # requires 'cover' as a mask covariate

[smooth terms]
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Appendix. More on models in secr

A family of capture-recapture models, such as the Cormack-Jolly-Seber models for survival, may include
submodels? that allow for variation in core (‘real’) parameters, including the effects of covariates. Annual
survival, for example, may vary with the severity of winter weather, so it often makes sense to include a
measure of winter severity as a covariate. Gary White’s MARK software has been particularly successful in
packaging open-population models for biologists, and secr aims for similar flexibility.

The language of generalised linear models is convenient for describing submodels (e.g. Huggins 1989, Lebreton
et al. 1992). Each parameter is treated as a linear combination of predictor variables on its transformed
(‘link’) scale. This is useful for combining effects because, given a suitable link function, any combination
maps to a feasible value of the parameter. The logit scale has this property for probabilities in (0, 1), and the
natural log scale works for positive parameters i.e. (0, +00). These are the link functions used most often in
secr, but there are others, including the identity (null) link. Set link functions with the ‘link’ argument of
secr.fit.

Submodels are defined symbolically in secr using R formula notation. A separate linear predictor is used for
each core parameter. Core parameters are ‘real’ parameters in the terminology of MARK, and secr uses that
term because it will be familiar to biologists. Three real parameters are commonly modelled in secr; these
are denoted D (for density), g0, and sigma.

Other ‘real’ parameters appear in particular contexts. ‘z’ is a shape parameter that is used only when the
detection function has three parameters (annular halfnormal, cumulative gamma, hazard-rate etc. — see
?detectfn). ‘lambda0’ substitutes for ‘g0’ when the detection function is defined in terms of cumulative
hazard. ‘pmix’ represents the mixing proportion in finite mixture models (or e.g., the sex ratio in hybrid
mixture models with ‘hcov’).

For each real parameter there is a linear predictor of the form y = X3, where y is a vector of parameter values
on the link scale, X is a design matrix of predictor values, and [ is a vector of coefficients. Each element
of y and corresponding row of X relates to the value of the real parameter in a particular circumstance
(e.g. density at a particular point in space, or detection probability of an animal on a particular occasion). The
elements of 3 are coefficients estimated when we fit the model. In MARK these are called ‘beta parameters’
to distinguish them from the transformed ‘real’ parameter values in y. secr acknowledges this usage, but
also refers to beta parameters as ‘coefficients’ and real parameters as ‘fitted values’, a usage more in line with
other statistical modelling in R. X has one column for each element of 8. Design matrices are described in
more detail in the next section.

Design matrices

A design matrix is specific to a ‘real’ parameter. Each design matrix X contains a column of '1’s (for the
constant or intercept term) and additional columns as needed to describe the effects in the submodel for the

2This use of ‘submodel’ is non-standard — maybe we’ll find a better term.


http://www.phidot.org

parameter. Depending on the model, these may be continuous predictors (e.g. air temperature to predict
occasion-to-occasion variation in g0), indicator variables (e.g. 1 if animal ¢ was caught before occasion s, 0
otherwise), or coded factor levels. Within secr.fit, each design matrix is constructed automatically from
the input data and the model formula in a 2-stage process.

First, a data frame is built containing ‘design data’ with one column for each variable in the formula. Second,
the R function model .matrix is used to construct the design matrix. This process is hidden from the user.
The design matrix will have at least one more column than the design data; there may be more if the formula
includes interactions or factors with more than two levels. For a good description of this general approach see
the documentation for RMark (Laake and Rexstad 2014). The necessary design data are either extracted from
the inputs or generated automatically, as explained in later sections. ‘Real” parameters fall into two groups:
density (D) and detection (g0, sigma and z). Density and detection parameters are subject to different effects,
so they use different design matrices as described in the next three sections.

Detection submodels

For SECR, we want to model the detection of each individual ¢ on occasion s at detector k. Given n observed
individuals on S occasions at K detectors, there are therefore nSK detection probabilities of interest. We
treat these as elements in a 3-dimensional array. Strictly, we are also interested in the detection probabilities
of unobserved individuals, but these are estimated only by extrapolation from those observed so we do not
include them in the array.

In a null model, all nSK detection probabilities are assumed to be the same. The conventional sources of
variation in capture probability (Otis et al. 1978) appear as variation either in the n dimension (individual
heterogeneity h), or in the S dimension (‘time variation’ t), or as a particular interaction in these two
dimensions (‘behavioural response to capture’ b). Combined effects are possible.

SECR introduces additional complexity. Detection probability in SECR is no longer a scalar (even for a
particular animal-occasion-detector combination); it is described by a ‘detection function’ The detection
function may have two parameters (e.g. g0, sigma for a half-normal function), or three parameters (e.g. g0,
sigma, z). Any of the parameters of the detection function may vary with respect to individual (subscript 7),
occasion (subscript s) or detector (subscript k).

The full design matrix for each detection submodel has one row for each combination of i, s and k. Allowing
a distinct probability for each animal (the n dimension) may seem excessive, and truly individual-specific
covariates are feasible only when a model is fitted by maximizing the conditional likelihood (cf Huggins 1989).
However, the full nSK array is convenient for coding both group membership (Lebreton et al. 1992, Cooch
and White 2014) and experience of capture, even when individual-specific covariates cannot be modelled.

The programming gets even more complex. Analyses may combine data from several independent samples,
dubbed ‘sessions’ This adds a fourth dimension of length equal to the number of sessions. When finite
mixture models are used for detection parameters there is even a fifth dimension, with the preceding structure
being replicated for each mixture class. Fortunately, secr handles all this out of view: as a user you only
need to know how to specify the detection model.
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