
Non-Euclidean distances in secr 5.2

Murray Efford

2025-01-26

Contents

Introduction 1

Basics 1

Static userdist 2

Dynamic userdist 4

Examples 4
1. Scale of movement σ depends on location of home-range centre 5
2. Scale of movement σ depends on locations of both home-range centre and detector 6
3. Continuously varying σ using gdistance . 6
4. Density-dependent σ . 7
5. Habitat model for connectivity . 9

And the winner is. . . 9

Notes 9

References 11

Appendix. Implementation in secr of Sutherland et al. (2014) non-Euclidean simulation. 11

Introduction

Spatially explicit capture–recapture (SECR) entails a distance-dependent observation model: the expected
number of detections (λ) or the probability of detection (g) declines with increasing distance between a
detector and the home-range centre of a focal animal. ‘Distance’ here usually, and by default, means the
Euclidean distance d =

√

(x1 − x2)2 + (y1 − y2)2. The observation model can be customised by replacing the
Euclidean distance with one that ‘warps’ space in some ecologically meaningful way. There are innumerable
ways to do this. One is the a non-Euclidean ‘ecological distance’ envisioned by Royle et al. (2013).

This document shows how to define and use non-Euclidean distances in secr 5.2. An appendix gives example
secr code for the non-Euclidean SECR analysis of Sutherland et al. (2015).

Basics

Non-Euclidean distances are defined in secr by setting the ‘userdist’ component of the ‘details’ argument
of secr.fit. The options are (i) to provide a static K × M matrix containing the distances between the
K detectors and each of the M mask points, or (ii) to provide a function that computes the distances
dynamically. A static distance matrix can allow for barriers to movement. Providing a function is more

1

flexible and allows the estimation of a parameter for the distance model, but evaluating the function for each
likelihood slows down model fitting.

Static userdist

A pre-computed non-Euclidean distance matrix may incorporate constraints on movement, particularly
mapped barriers to movement, and this is the most obvious reason to employ a static userdist. The function
nedist builds a suitable matrix.

As an example, take the 1996 DNA survey of the grizzly bear population in the Central Selkirk mountains
of British Columbia by Mowat and Strobeck (2000)1. Their study area was partly bounded by lakes and
reservoirs that we assume are rarely crossed by bears. To treat the lakes as barriers in a SECR model we
need a matrix of hair snag – mask point distances for the terrestrial (non-Euclidean) distance between each
pair of points.

We start with the hair snag locations CStraps and a SpatialPolygonsDataFrame object BLKS_BC representing
the large lakes (Fig. 1a). Buffering 30 km around the detectors gives a naive mask (Fig. 1b); we use a 2-km
pixel size and reject points centred in a lake. The shortest dry path from many points on the naive mask to
the nearest detector is much longer than the straight line distance.

CSmask2000 <- make.mask (CStraps, buffer = 30000, type = "trapbuffer", spacing = 2000,

poly = BLKS_BC, poly.habitat = F, keep.poly = F)

1Thanks to Garth Mowat for providing these data.

2

Fig. 1. (a) Central Selkirk grizzly bear hair snag locations (Mowat and Strobeck 2000), (b) Mask using naive
30-km buffer around hair snags, (c) Example map of dry-path distances from an arbitrary point, and (d)
Efficient mask rejecting dry-path distances >30km.

We next calculate the matrix of all dry detector–mask distances by calling nedist that in turn uses functions
from the R package gdistance (van Etten 2014). Missing pixels in the mask represent barriers to movement
when their combined width exceeds a threshold determined by the adjacency rule in gdistance.

What do we mean by an adjacency rule? gdistance finds least-cost distances through a graph formed by
joining ‘adjacent’ pixels. Adjacent pixels are defined by the argument ‘directions’, which may be 4 (rook’s
case), 8 (queen’s case) or 16 (knight and one-cell queen moves) as in the raster function adjacent. The
default in nedist is ‘directions = 16’ because that gives the best approximation to Euclidean distances when
there are no barriers. The knight’s moves are

√
5 ≈ 2.24 × cell width (‘spacing’), so the width of a polygon

intended to map a barrier should be at least 2.24 × cell width.

Some of the BC lakes are narrow and less than 4.48 km wide. To ensure these act as barriers we could simply
reduce the spacing of our mask, but that would slow down model fitting. The alternative is to retain the 2-km
mask for model fitting and to define a finer (0.5-km) mask purely for the purpose of computing distances2:

CSmask500 <- make.mask (CStraps, buffer = 30000, type = "trapbuffer", spacing = 500,

poly = BLKS_BC, poly.habitat = F, keep.poly = F)

userd <- nedist(CStraps, CSmask2000, CSmask500)

The first argument of nedist provides the rows of the distance matrix and the second argument the columns;
the third (if present) defines an alternative mask on which to base the calculations. To verify the computation,
map the distance from a chosen detector i to every point in a mask. Here is a short function to do that; see
Fig. 1c for an example.

dmap <- function (traps, mask, userd, i = 1, ...) {

if (is.na(i)) i <- nearesttrap(unlist(locator(1)), traps)

covariates(mask) <- data.frame(d = userd[i,])

covariates(mask)$d[!is.finite(covariates(mask)$d)] <- NA

plot(mask, covariate = "d", ...)

points(traps[i,], pch = 3, col = "red")

}

dmap(CStraps, CSmask2000, userd, dots = F, scale = 0.001, title = "distance km")

At this point we could simply use ‘userd’ as our userdist matrix. However, CSmask2000 now includes a lot of
points that are further than 30 km from any detector. It is better to drop these points and the associated
columns of ‘userd’ (Fig. 1d):

OK <- apply(userd, 2, min) < 30000

CSmask2000b <- subset(CSmask2000, OK)

userd <- userd[,OK]

Finally, we can fit a model using the non-Euclidean distance matrix:

CSa <- secr.fit(CS_sexcov_all, mask = CSmask2000b, details = list(userdist = userd))

predict(CSa)

For completeness, note that Euclidean distances may also be pre-calculated, using the function edist. By
default, secr.fit uses that function internally, and there is usually little speed improvement when the
calculation is done separately.

2Mixing 2-km and 0.5-km cells carries a slight penalty: the centres of a few 2-km cells (<1%) do not lie in valid 0.5-km cells;
these become inaccessible (infinite distance from all detectors) and are silently dropped in a later step.

3

Dynamic userdist

The userdist function takes three arguments. The first two are simply 2-column matrices with the coordinates
of the detectors and animal locations (mask points) respectively. The third is a habitat mask (this may be
the same as xy2). The function has this form:

mydistfn <- function (xy1, xy2, mask) {

if (missing(xy1)) return(charactervector)

...

distmat # return nrow(xy1) x nrow(xy2) matrix

}

Computation of the distances is entirely under the control of the user – here we indicate that by ‘. . . ’. The
calculations may use cell-specific values of two ‘real’ parameters ‘D’ and ‘noneuc’ that as needed are passed
by secr.fit as covariates of the mask. ‘D’ is the usual cell-specific expected density in animals per hectare.
‘noneuc’ is a special cell-specific ‘real’ parameter used only here: it means whatever the user wants it to mean.

Whether ‘noneuc’, ‘D’ or other mask covariates are needed by mydistfn is indicated by the character vector
returned by mydistfn when it is called with no arguments. Thus, charactervector may be either a zero-length
character vector or a vector of one or more parameter names (“noneuc”, “D”, c(“noneuc”, “D”)).

‘noneuc’ has its own link scale (default ‘log’) on which it may be modelled as a linear function of any
of the predictors available for density (x, y, x2, y2, xy, session, Session, g, or any mask covariate – see
secr-densitysurfaces.pdf). It may also, in principle, be modelled using regression splines (Borchers and Kidney
in prep.), but this is untested. When the model is fitted by secr.fit, the beta parameters for the ‘noneuc’
submodel are estimated along with all the others. To make noneuc available to userdist, ensure that it
appears in the ‘model’ argument. Use the formula noneuc ~ 1 if noneuc is constant.

The function may compute least-cost paths via intervening mask cells using the powerful igraph package
(Csardi and Nepusz 2006). This is most easily accessed with Jacob van Etten’s package gdistance, which in
turn uses the RasterLayer S4 object class from the package raster. To facilitate this we include code in secr
to treat the ‘mask’ S3 class as a virtual S4 class, and provide a method for the function ‘raster’ to convert a
mask to a RasterLayer.

If the function generates any bad distances (negative, infinite or missing) these will be replaced by 1e10, with
a warning.

Examples

We use annotated examples to show how the userdist function may be used to define different models. For
illustration we use the Orongorongo Valley brushtail possum dataset from February 1996 (see OVpossum in
secr-manual.pdf). The data are captures of possums over 5 nights in single-catch traps at 30-m spacing. We
start by extracting the data, defining a habitat mask, and fitting a null model:

library(secr)

options (digits = 4)

datadir <- system.file("extdata", package = "secr")

ovforest <- sf::st_read (paste0(datadir, "/OVforest.shp"), quiet = TRUE)

leftbank <- read.table(paste0(datadir,"/leftbank.txt"))[21:195,] # for plotting only

ovposs <- OVpossumCH[[1]] # February 1996

ovmask <- make.mask(traps(ovposs), buffer = 120, type = "trapbuffer",

poly = ovforest[1:2,], spacing = 7.5, keep.poly = FALSE)

fit0 <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE)

Warning: multi-catch likelihood used for single-catch traps

4

https://www.otago.ac.nz/density/pdfs/secr-densitysurfaces.pdf
https://www.otago.ac.nz/density/pdfs/secr-manual.pdf

The warning is routine: we will suppress it in later examples. The distance functions below are not specific
to a particular study: each may be applied to other datasets.

1. Scale of movement σ depends on location of home-range centre

In this simple case we use the non-Euclidean distance function to model continuous spatial variation in σ.
This cannot be done directly in secr because sigma is treated as part of the detection model, which does not
allow for continuous spatial variation in its parameters. Instead we model spatial variation in ‘noneuc’ as a
stand-in for ‘sigma’

fn1 <- function (xy1, xy2, mask) {

if (missing(xy1)) return("noneuc")

sig <- covariates(mask)$noneuc # sigma(x,y) at mask points

sig <- matrix(sig, byrow = TRUE, nrow = nrow(xy1), ncol = nrow(xy2))

euc <- edist(xy1, xy2)

euc / sig

}

fit1 <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,

details = list(userdist = fn1), model = noneuc ~ x + y + x2 + y2 + xy,

fixed = list(sigma = 1))

predict(fit1)

link estimate SE.estimate lcl ucl

D log 14.6843 1.091475 12.69615 16.9838

lambda0 log 0.1085 0.009626 0.09123 0.1291

noneuc log 25.9243 1.301933 23.49554 28.6040

We can take the values of noneuc directly from the mask covariates because we know xy2 and mask are the
same points. We may sometimes want to use fn1 in context where this does not hold, e.g., when simulating
data.

fn1a <- function (xy1, xy2, mask) {

if(missing(xy1)) return("noneuc")

xy1 <- addCovariates(xy1, mask)

sig <- covariates(xy1)$noneuc # sigma(x,y) at detectors

sig <- matrix(sig, nrow = nrow(xy1), ncol = nrow(xy2))

euc <- edist(xy1, xy2)

euc / sig

}

fit1a <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,

details = list(userdist = fn1a), model = noneuc ~ x + y + x2 + y2 + xy,

fixed = list(sigma = 1))

predict(fit1a)

link estimate SE.estimate lcl ucl

D log 14.4619 1.029689 12.58050 16.6248

lambda0 log 0.1076 0.009525 0.09047 0.1279

noneuc log 26.1254 1.419877 23.48742 29.0596

We can verify the use of ‘noneuc’ in fn1 by using it to re-fit the null model:

fit0a <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,

details = list(userdist = fn1), model = noneuc ~ 1,

fixed = list(sigma = 1))

5

predict(fit0)

link estimate SE.estimate lcl ucl

D log 14.3802 1.003093 12.5447 16.4842

lambda0 log 0.1015 0.008948 0.0854 0.1206

sigma log 27.3765 0.972969 25.5349 29.3508

predict(fit0a)

link estimate SE.estimate lcl ucl

D log 14.3802 1.003093 12.5447 16.4842

lambda0 log 0.1015 0.008948 0.0854 0.1206

noneuc log 27.3764 0.972967 25.5349 29.3508

Here, fitting noneuc as a constant while holding sigma fixed is exactly the same as fitting sigma alone.

2. Scale of movement σ depends on locations of both home-range centre and
detector

Hypothetically, detections at xy1 of an animal centred at xy2 may depend on both locations (this may also be
seen as a approximation to the following case of continuous variation along the path between xy1 and xy2).
To model this we need to retrieve the value of noneuc for both locations. Within fn2 we use addCovariates

to extract the covariates of the mask (and hence noneuc) for each point in xy1 and xy2. The call to secr.fit

is identical except that it uses fn2 instead of fn1:

fn2 <- function (xy1, xy2, mask) {

if (missing(xy1)) return("noneuc")

xy1 <- addCovariates(xy1, mask)

xy2 <- addCovariates(xy2, mask)

sig1 <- as.numeric(covariates(xy1)$noneuc) # sigma(x,y) at detectors

sig2 <- as.numeric(covariates(xy2)$noneuc) # sigma(x,y) at mask points

euc <- edist(xy1, xy2)

sig <- outer (sig1, sig2, FUN = function(s1, s2) (s1 + s2)/2)

euc / sig

}

fit2 <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,

details = list(userdist = fn2), model = noneuc ~ x + y + x2 + y2 + xy,

fixed = list(sigma = 1))

predict(fit2)

link estimate SE.estimate lcl ucl

D log 14.5466 1.058030 12.61626 16.7722

lambda0 log 0.1078 0.009549 0.09066 0.1282

noneuc log 26.0233 1.351012 23.50723 28.8087

Tip: the value of noneuc reported by predict.secr is the predicted value at the centroid of the mask, because
the model uses standardised mask coordinates.

3. Continuously varying σ using gdistance

A more elegant but slower approach is to find the least-cost path across the network of cells between xy1
and xy2, using noneuc (i.e. sigma) as the cell-specific cost weighting (large cell-specific sigma equates with
greater ‘conductance’, the inverse of friction or cost). For this we use functions from the package gdistance,
which in turn uses igraph.

6

fn3 <- function (xy1, xy2, mask) {

if (missing(xy1)) return("noneuc")

warp distances to be proportional to \int_along path sigma(x,y) dp

where p is path distance

if (!require(gdistance))

stop ("install package gdistance to use this function")

make raster from mask

Sraster <- raster(mask, "noneuc")

Assume animals can traverse gaps: bridge gaps using global mean

Sraster[is.na(Sraster[])] <- mean(Sraster[], na.rm = TRUE)

TransitionLayer

tr <- transition(Sraster, transitionFunction = mean, directions = 16)

tr <- geoCorrection(tr, type = "c", multpl = FALSE)

costDistance

costDistance(tr, as.matrix(xy1), as.matrix(xy2))

}

fit3 <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,

details = list(userdist = fn3), model = noneuc ~ x + y + x2 + y2 + xy,

fixed = list(sigma = 1))

predict(fit3)

link estimate SE.estimate lcl ucl

D log 14.4063 1.050021 12.49093 16.6154

lambda0 log 0.1076 0.009504 0.09053 0.1279

noneuc log 26.4338 1.364355 23.89218 29.2459

The gdistance function costDistance uses a TransitionLayer object that essentially describes the connections
between cells in a RasterLayer. In transition adjacent cells are assigned a positive value for ‘conductance’
and all other cells a zero value. Adjacency is defined by the directions argument as 4 (rook’s case), 8 (queen’s
case), 16 (knight and one-cell queen moves) and possibly other values (see ?adjacent in gdistance). Values <
16 can considerably distort distances even if conductance is homogeneous. geoCorrection is needed to allow
for the greater separation (×

√
2) of cell centres measured along diagonals.

In ovmask there are two forest blocks separated by a shingle stream bed and low scrub that is easily crossed
by possums but does not count as ‘habitat’. Habitat gaps are assumed in secr to be traversible. The opposite
is assumed by gdistance. To coerce gdistance to behave like secr we here temporarily fill in the gaps.

The argument ‘transitionFunction’ determines how the conductance values of adjacent cells are combined to
weight travel between them. Here we simply average them, but any other single-valued function of 2 inputs
can be used.

Integrating along the path (fn3) takes about 3.6 times as long as the approximation (fn2) and gives quite
similar results.

4. Density-dependent σ

A more interesting variation makes sigma a function of the cell-specific density, which may vary independently
across space (Efford et al. 2015). Specifically, σ(x, y) = k/

√

D(x, y), where k is the fitted parameter (noneuc).

fn4 <- function (xy1, xy2, mask) {

if(missing(xy1)) return(c("D", "noneuc"))

if (!require(gdistance))

stop ("install package gdistance to use this function")

make raster from mask

D <- covariates(mask)$D

7

k <- covariates(mask)$noneuc

Sraster <- raster(mask, values = k / Dˆ0.5)

Assume animals can traverse gaps: bridge gaps using global mean

Sraster[is.na(Sraster[])] <- mean(Sraster[], na.rm = TRUE)

TransitionLayer

tr <- transition(Sraster, transitionFunction = mean, directions = 16)

tr <- geoCorrection(tr, type = "c", multpl = FALSE)

costDistance

costDistance(tr, as.matrix(xy1), as.matrix(xy2))

}

fit4 <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,

details = list(userdist = fn4), fixed = list(sigma = 1),

model = list(noneuc ~ 1, D ~ x + y + x2 + y2 + xy))

predict(fit4)

link estimate SE.estimate lcl ucl

D log 15.4548970 1.638571525 12.56236531 19.0134449

lambda0 log 0.1066912 0.009407833 0.08978763 0.1267771

noneuc log 103.2281764 5.033253378 93.82521347 113.5734842

or using regression splines with same df

fit4a <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,

details = list(userdist = fn4), fixed = list(sigma = 1),

model = list(noneuc~1, D ~ s(x,y, k = 6)))

predict(fit4a)

link estimate SE.estimate lcl ucl

D log 15.7641512 1.766438512 12.66447851 19.6224789

lambda0 log 0.1068068 0.009416593 0.08988723 0.1269111

noneuc log 103.0827973 5.008734347 93.72407828 113.3760213

plot(predictDsurface(fit4a))

plot(traps(ovposs), add=T)

lines(leftbank)

8

5. Habitat model for connectivity

Yet another possibility, in the spirit of Royle et al. (2013), is to model conductance as a function of habitat
covariates. As usual in secr these are stored as one or more mask covariates. It is easy to add a covariate for
forest type (Nothofagus-dominant ‘beech’ vs ‘nonbeech’) to our mask:

ovmask <- addCovariates(ovmask, ovforest[1:2,])

fit5 <- secr.fit(ovposs, mask = ovmask, detectfn = "HHN", trace = FALSE,

details = list(userdist = fn2), model = list(D ~ forest, noneuc ~ forest),

fixed = list(sigma = 1))

predict(fit5, newdata = data.frame(forest=c("beech", "nonbeech")))

$`forest = beech`

link estimate SE.estimate lcl ucl

D log 9.4251372 2.65312644 5.48570024 16.1935957

lambda0 log 0.1011087 0.00893371 0.08505983 0.1201855

noneuc log 29.5577354 3.40606292 23.59972290 37.0199143

##

$`forest = nonbeech`

link estimate SE.estimate lcl ucl

D log 15.6745118 1.26793441 13.37985208 18.3627082

lambda0 log 0.1011087 0.00893371 0.08505983 0.1201855

noneuc log 27.2347531 1.03191593 25.28618197 29.3334824

Note that we have re-used the userdist function fn2, and allowed both density and noneuc (sigma) to vary by
forest type. Strictly, we should have identified “forest” as a required covariate in the (re)definition of fn2, but
this is obviously not critical.

A full analysis should also consider models with variation in lambda0. There is no simple way in secr to
model continuous spatial variation in lambda0 as a function of home-range location (cf sigma in Example
1 above). However, variation in lambda0 at the point of detection may be modelled with detector-level
covariates(secr-overview.pdf).

And the winner is. . .

Now that we have a bunch of fitted models, let’s see which does the best:

AIC(fit0, fit0a, fit1, fit1a, fit2, fit3, fit4, fit4a, fit5, criterion = "AIC")[, -c(2,4,6)]

model npar AIC dAIC AICwt

fit4a D~s(x, y, k = 6) lambda0~1 noneuc~1 8 3098.129 0.000 0.4549

fit4 D~x + y + x2 + y2 + xy lambda0~1 noneuc~1 8 3098.511 0.382 0.3758

fit1 D~1 lambda0~1 noneuc~x + y + x2 + y2 + xy 8 3101.833 3.704 0.0714

fit3 D~1 lambda0~1 noneuc~x + y + x2 + y2 + xy 8 3102.433 4.304 0.0529

fit2 D~1 lambda0~1 noneuc~x + y + x2 + y2 + xy 8 3103.540 5.411 0.0304

fit1a D~1 lambda0~1 noneuc~x + y + x2 + y2 + xy 8 3104.991 6.862 0.0147

fit0 D~1 lambda0~1 sigma~1 3 3118.108 19.979 0.0000

fit0a D~1 lambda0~1 noneuc~1 3 3118.108 19.979 0.0000

fit5 D~forest lambda0~1 noneuc~forest 5 3118.409 20.280 0.0000

. . . the model with a quadratic or spline trend in density and density-dependent sigma.

Notes

The ‘real’ parameter for spatial scale (σ) is lurking in the background as part of the detection model.
User-defined non-Euclidean distances are used in the detection function just like ordinary Euclidean distances.

9

https://www.otago.ac.nz/density/pdfs/secr-overview.pdf

This means in practice that they are (almost) always divided by (σ). Formally: the distance dij between an
animal i and a detector j appears in all commonly used detection functions as the ratio rij = dij/σ (e.g.,
halfnormal λ = λ0 exp(−0.5r2

ij) and exponential λ = λ0 exp(−rij)).

What if I want non-Euclidean distances, but do not want to estimate noneuc? This is a perfectly reasonable
request if sigma is constant across space and the distance computation is determined entirely by the habitat
geometry, with no need for an additional parameter. If ‘noneuc’ is not included in the character vector
returned by your userdist function when it is called with no arguments then noneuc is not modelled at all.
(This is the default in secrlinear).

The initial value of ‘noneuc’ can be a problem. The argument ‘start’ of secr.fit may be a named, and
possibly incomplete, list of real parameter values, so a call such as this is valid:

secr.fit (captdata, model = noneuc~1, details = list(userdist=fn2), trace = FALSE,

start = list(noneuc = 25), fixed = list(sigma = 1))

##

secr.fit(capthist = captdata, model = noneuc ~ 1, start = list(noneuc = 25),

fixed = list(sigma = 1), details = list(userdist = fn2),

trace = FALSE)

secr 5.2.0, 12:30:55 26 Jan 2025

##

Detector type single

Detector number 100

Average spacing 30 m

x-range 365 635 m

y-range 365 635 m

##

N animals : 76

N detections : 235

N occasions : 5

Mask area : 21.22711 ha

##

Model : D~1 g0~1 noneuc~1

User distances : dynamic (function)

Fixed (real) : sigma = 1

Detection fn : halfnormal

Distribution : poisson

N parameters : 3

Log likelihood : -759.0257

AIC : 1524.051

AICc : 1524.385

##

Beta parameters (coefficients)

beta SE.beta lcl ucl

D 1.7010686 0.11761472 1.470548 1.9315892

g0 -0.9784938 0.13623904 -1.245517 -0.7114702

noneuc 3.3798318 0.04441538 3.292779 3.4668844

##

Variance-covariance matrix of beta parameters

D g0 noneuc

D 0.0138332230 0.0001557834 -0.0009907546

g0 0.0001557834 0.0185610769 -0.0033433785

noneuc -0.0009907546 -0.0033433785 0.0019727258

##

Fitted (real) parameters evaluated at base levels of covariates

10

link estimate SE.estimate lcl ucl

D log 5.4797998 0.64674046 4.3516189 6.9004676

g0 logit 0.2731907 0.02705129 0.2234771 0.3292741

noneuc log 29.3658325 1.30493806 26.9175717 32.0367723

We have ignored the parameter λ0. This is almost certainly a mistake, as large variation in σ without
compensatory or normalising variation in λ0 is biologically implausible and can lead to improbable results
(Efford and Mowat 2014, Efford 2014).

It is intended that non-Euclidean distances should work with all relevant functions in secr. However, not all
possible combinations have been tested, and not all make sense. Please report any problems.

You may be tempted to model ‘noneuc’ as a function of group - after all, D~g is permitted, right? Unfortunately,
this will not work. There is only one pre-computed distance matrix, rather than a set of matrices, one per
group.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture–recapture
studies. Biometrics 64, 377–385.

Borchers, D. L. and Kidney, D. J. (2014) Flexible density surface estimation using regression splines with
spatially explicit capture-recapture data. In prep.

Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. InterJournal

1695. http://igraph.org.

Efford, M. G. (2014) Bias from heterogeneous usage of space in spatially explicit capture–recapture analyses.
Methods in Ecology and Evolution 5, 599–602.

Efford, M. G., Dawson, D. K., Jhala, Y. V. and Qureshi, Q. (2016) Density-dependent home-range size
revealed by spatially explicit capture-recapture. Ecography 39, 676–688.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture–recapture data. Ecology 95,
1341–1348.

Mowat, G. and Strobeck, C. (2000) Estimating population size of grizzly bears using hair capture, DNA
profiling, and mark–recapture analysis. Journal of Wildlife Management 64, 183–193.

Royle, J. A., Chandler, R. B., Gazenski, K. D. and Graves, T. A. (2013) Spatial capture–recapture models
for jointly estimating population density and landscape connectivity. Ecology 94, 287–294.

Sutherland, C., Fuller, A. K. and Royle, J. A. (2015) Modelling non-Euclidean movement and landscape
connectivity in highly structured ecological networks. Methods in Ecology and Evolution 6, 169–177.

van Etten, J. (2014) gdistance: distances and routes on geographical grids. R package version 1.1-5.
https://CRAN.R-project.org/package=gdistance

Appendix. Implementation in secr of Sutherland et al. (2014)
non-Euclidean simulation.

Sutherland et al. (2014) simulated SECR data from a population of animals whose movement was channeled
to varying extents along a dendritic network (river system). Their model treated the habitat as 2-dimensional
and shrank distances for pixels close to water and expanded them for pixels further away. Chris has kindly
provided data for the network map and detector layout which we use here to emulate their simulations in
secr. We assume an existing SpatialLinesDataFrame sample.water for the network, and a matrix of x-y
coordinates for detector locations gridTrapsXY. rivers is a version of sample.water clipped to the habitat
mask and used only for plotting.

11

http://igraph.org
https://CRAN.R-project.org/package=gdistance

use package secrlinear to create a discretised version of the network,

as a handy way to get distance to water

loading this package also loads secr

library(secrlinear)

library(gdistance)

swlinearmask <- read.linearmask(data = sample.water, spacing = 100)

generate secr traps object from detector locations

tr <- data.frame(gridTrapsXY*1000) # convert to metres

names(tr) <- c("x","y")

tr <- read.traps(data=tr, detector = "count")

generate 2-D habitat mask

sw2Dmask <- make.mask(tr, buffer = 3950, spacing = 100)

d2w <- distancetotrap(sw2Dmask, swlinearmask)

covariates(sw2Dmask) <- data.frame(d2w = d2w/1000) # km to water

Warning: attribute variables are assumed to be spatially constant throughout

all geometries

plot distance to water

par(mar = c(1,6,1,6))

plot(sw2Dmask, covariate = "d2w", dots = FALSE)

plot(tr, add = TRUE)

plot(rivers, add = TRUE, col = "blue")

Fig. A1. Shaded plot of distance to water (d2w in km) with detector sites (red crosses) and rivers
superimposed. Detector spacing 1.5 km N-S.

The distance function requires a value of the friction parameter ‘noneuc’ for each mask pixel. Distances are
approximated using gdistance functions as before, except that we interpret the distance-to-water scale as
‘friction’ and invert that for gdistance.

12

userdfn1 <- function (xy1, xy2, mask) {

if (missing(xy1)) return("noneuc")

require(gdistance)

Sraster <- raster(mask, "noneuc")

conductance is inverse of friction

trans <- transition(Sraster, transitionFunction = function(x) 1/mean(x),

directions = 16)

trans <- geoCorrection(trans)

costDistance(trans, as.matrix(xy1), as.matrix(xy2))

}

The Royle et al. (2013) and Sutherland et al. (2014) models use an (α0, α1) parameterisation instead of
(λ0, σ). Their α2 translates directly to a coefficient in the secr model, as we’ll see. We consider just one
realisation of one scenario (the package secrdesign manages replicated simulations of multiple scenarios).

parameter values from Sutherland et al. 2014

alpha0 <- -1 # implies lambda0 = invlogit(-1) = 0.2689414

sigma <- 1400

alpha1 <- 1 / (2 * sigmaˆ2)

alpha2 <- 5 # just one scenario from the range 0..10

K <- 10 # sampling over 10 occasions, collapsed to 1 occasion

Now we are ready to build a simulated dataset.

simulate fixed population of 200 animals in masked area

pop <- sim.popn (D = 200/nrow(sw2Dmask), core = tr, buffer = 3950, Ndist = "fixed")

in order to simulate non-Euclidean detection we attach a mask with

the pixel-specific friction to the simulated popn object

covariates(sw2Dmask)$noneuc <- exp(alpha2 * covariates(sw2Dmask)$d2w)

attr(pop, "mask") <- sw2Dmask

now simulate detections, specifying our non-Euclidean distance function

CH <- sim.capthist(tr, pop = pop, userdist = userdfn1, noccasions = 1, binomN = K,

detectpar = list(lambda0 = invlogit(alpha0), sigma = sigma), detectfn = "HHN")

summary(CH, moves = TRUE)

Object class capthist

Detector type count

Detector number 64

Average spacing 1385.714 m

x-range 1698699 1708399 m

y-range 2387891 2398391 m

##

Counts by occasion

1 Total

n 37 37

u 37 37

f 37 37

M(t+1) 37 37

losses 0 0

detections 109 109

detectors visited 33 33

detectors used 64 64

##

Number of movements per animal

0 1 2 3

13

16 13 7 1

##

Distance moved, excluding zero (m)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1386 1386 1443 1552 1500 3151

##

Individual covariates

sex

F:21

M:16

Model fitting is simple, but the default starting value for noneuc is not suitable and is overridden:

fitne1 <- secr.fit (CH, mask = sw2Dmask, detectfn = "HHN", binomN = 10,

model = noneuc ~ d2w -1, details = list(userdist = userdfn1),

start = list(D = 0.005, lambda0 = 0.3, sigma = 1000, noneuc = 100),

trace = FALSE)

The warning from nlm indicates a potential problem, but the standard errors and confidence limits below
look plausible (they could be checked by running again with method = “none”). Fitting is slow (5 minutes
on an aging PC). This is partly because the mask is large (32384 pixels) in order to maintain resolution in
relation to the stream network.

coef(fitne1)

beta SE.beta lcl ucl

D -5.304155 0.18171360 -5.660308 -4.948003

lambda0 -1.138630 0.16982960 -1.471490 -0.805770

sigma 7.149075 0.09139487 6.969944 7.328205

noneuc.d2w 4.596125 0.50303378 3.610197 5.582053

predict(fitne1)

link estimate SE.estimate lcl ucl

D log 4.970895e-03 9.107872e-04 3.481446e-03 7.097566e-03

lambda0 log 3.202575e-01 5.478374e-02 2.295832e-01 4.467438e-01

sigma log 1.272928e+03 1.165824e+02 1.064163e+03 1.522647e+03

noneuc log 7.539491e+00 1.687568e+00 4.888109e+00 1.162902e+01

region.N(fitne1)

estimate SE.estimate lcl ucl n

E.N 160.9775 29.49493 112.7431 229.8476 37

R.N 160.9774 26.62656 118.7687 224.9739 37

The coefficient noneuc.d2w corresponds to alpha2. Estimates of predicted (‘real’) parameters D and lambda0,
and the coefficient noneuc.d2w, and are comfortably close to the true values, and all true values are covered
by the 95% CI.

We fit the ‘noneuc’ (friction) parameter through the origin (zero intercept; −1 in formula). The predicted
value of ‘noneuc’ relates to the covariate value for the first pixel in the mask (d2w = 1.133 km), but in this
zero-intercept model the meaning of ‘noneuc’ itself is obscure. In effect, the parameter alpha1 (or sigma)
serves as the intercept; the same model may be fitted by fixing sigma (fixed = list(sigma = 1)) and
estimating an intercept for noneuc (model = noneuc ~ d2w). In this case, ‘noneuc’ may be interpreted as
the site-specific sigma (see also examples in the main text).

It is interesting to plot the predicted detection probability under the simulated model. For plotting we add
the pdot value as an extra covariate of the mask. Note that pdot here uses the ‘noneuc’ value previously
added as a covariate to sw2Dmask.

14

covariates(sw2Dmask)$predicted.pdot <- pdot(sw2Dmask, tr, noccasions = 1, binomN = 10,

detectfn = "HHN", detectpar = list(lambda0 = invlogit(-1), sigma = sigma),

userdist = userdfn1)

par(mar = c(1,6,1,6))

plot(sw2Dmask, covariate = "predicted.pdot", dots = FALSE)

plot(tr, add = TRUE)

plot(rivers, add = TRUE, col = "blue")

Fig. A2. Shaded plot of p
·
(x, y) (probability animal is detected at least once). Detector sites and rivers as

in Fig. A1. Animals living within the detector array and away from a river (about half the population within
the array) stand very little chance of being detected because the model confines them to a small home range
and λ0 is constant.

15

	Introduction
	Basics
	Static userdist
	Dynamic userdist
	Examples
	1. Scale of movement \sigma depends on location of home-range centre
	2. Scale of movement \sigma depends on locations of both home-range centre and detector
	3. Continuously varying \sigma using gdistance
	4. Density-dependent \sigma
	5. Habitat model for connectivity

	And the winner is…
	Notes
	References
	Appendix. Implementation in secr of Sutherland et al. (2014) non-Euclidean simulation.

