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At the heart of SECR there is usually a set of three primary model parameters: one for population density
(D) and two for the detection function. The detection function is commonly parameterised in terms of its
intercept (the probability g0 or cumulative hazard λ0 of detection for a detector at the centre of the home
range) and a spatial scale parameter σ. Although this parameterisation is simple and uncontroversial, it is not
inevitable. Sometimes the biology leads us to expect a structural relationship between primary parameters.
The relationship may be ‘hard-wired’ into the model by replacing a primary parameter with a function of
other parameter(s). This often makes for a more parsimonious model, and model comparisons may be used
to evaluate the hypothesized relationship. Here we outline some parameterisation options in secr.

Theory

The general idea is to replace a primary detection parameter with a function of other parameter(s) in the
SECR model. This may allow constraints to be applied more meaningfully. Specifically, it may make sense to
consider a function of the parameters to be constant, even when one of the primary parameters varies. The
new parameter also may be modelled as a function of covariates etc.

λ0 and σ

One published example concerns compensatory heterogeneity of detection parameters (Efford and Mowat
2014). Combinations of λ0 and σ yield the same effective sampling area a when the cumulative hazard of
detection (λ(d))1 is a linear function of home-range utilisation. Variation in home-range size then has no effect

1The cumulative hazard λ(d) and probability g(d) formulations are largely interchangeable because g(d) = 1 − exp(−λ(d)).
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on estimates of density. It would be useful to allow σ to vary while holding a constant, but this has some
fishhooks because computation of λ0 from a and σ is not straightforward. A simple alternative is to substitute
a0 = 2πλ0σ2; Efford and Mowat (2014) called a0 the ‘single-detector sampling area’. If the sampling regime
is constant, holding a0 constant is almost equivalent to holding a constant (but see Limitations). Fig. 1
illustrates the relationship for 3 levels of a0.
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Fig. 1. Structural relationship between parameters λ0 and σ expressed by holding a0 constant in λ0 =
a0/(2πσ2).

σ and D

Another biologically interesting structural relationship is that between population density and home-range size
(Efford et al. 2016). If home ranges have a definite edge and partition all available space then an inverse-square
relationship is expected D = (k/r)2 or r = k/

√

D, where r is a linear measure of home-range size (e.g., grid
cell width) and k is a constant of proportionality. In reality, the home-range model that underlies SECR
detection functions does not require a hard edge, so the language of ‘partitioning’ and Huxley’s (1934) ‘elastic
discs’ does not quite fit. However, the inverse-square relationship is empirically useful, and we conjecture that
it may also arise from simple models for constant overlap of home ranges when density varies – a topic for
future research. For use in SECR we equate r with the spatial scale of detection σ, and predict concave-up
relationships as in (Fig. 2).

The relationship may be modified by adding a constant c to represent the lower asymptote of sigma as density
increases ( σ = k/

√

D + c; by default c = 0 in secr).

It is possible, intuitively, that once a population becomes very sparse there is no further effect of density
on home-range size. Alternatively, very low density may reflect sparseness of resources, requiring the few
individuals present to exploit very large home ranges even if they seldom meet. If density is no longer related
to σ at low density, even indirectly, then the steep increase in σ modelled on the left of Fig. 3 will ‘level off’
at some value of σ. We don’t know of any empirical example of this hypothetical phenomenon, and do not
provide a model.
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Fig. 2. Structural relationship between parameters D and σ expressed by holding k constant in σ = 100k/
√

D.
The factor of 100 adjusts for the inconsistent default units of σ and D in secr (metres and hectares).

We use ‘primary parameter’ to mean one of (D, λ0, σ)2 For each relationship there is a primary parameter
considered the ‘driver’ that varies for external reasons (e.g., between times, sex classes etc.), and a dependent
parameter that varies in response to the driver, moderated by a ‘surrogate’ parameter that may be constant
or under external control. The surrogate parameter appears in the model in place of the dependent parameter.
Using the surrogate parameterisation is exactly equivalent to the default parameterisation if the driver
parameter(s) (σ and λ0 for a0

3, D for k4) are constant.

2
secr names D, lambda0 or sigma.

3
secr name a0

4
secr uses sigmak = 100k
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Implementation

Parameterisations in secr are indicated by an integer code (Table 1). The internal implementation of the
parameterisations (3)–(5) is straightforward. At each evaluation of the likelihood function:

1. The values of the driver and surrogate parameters are determined
2. Each dependent parameter is computed from the relevant driver and surrogate parameters
3. Values of the now-complete set of primary parameters are passed to the standard code for evaluating

the likelihood.

Table 1. Parameterisation codes

Code Description Driver Surrogate(s) Dependent

0 Default – – –
3 Single-detector sampling area σ a0 λ0 = a0/(2πσ2)

4 Density-dependent home range D k, c σ = 100k/
√

D + c

5 3 & 4 combined D, σ k, c, a0 σ = 100k/
√

D + c, λ0 = a0/(2πσ2)

The transformation is performed independently for each level of the surrogate parameters that appears in the
model. For example, if the model includes a learned response a0 ~ b, there are two levels of a0 (for naive
and experienced animals) that translate to two levels of lambda0. For parameterisation (4), σ = 100k/

√

D.
The factor of 100 is an adjustment for differing units (areas are expressed in hectares in secr, and 1 hectare
= 10 000 m2). For parameterisation (5), σ is first computed from D, and then λ0 is computed from σ.

In early versions of secr the options ‘scaleg0’ and ‘scalesigma’ performed much the same function as
parameterisations (3) and (4) respectively.

Interface

Users choose between parameterisations either

• explicitly, by setting the ‘param’ component of the secr.fit argument ‘details’, or
• implicitly, by including a parameterisation-specific parameter name in the secr.fit model.

Implicit selection causes the value of details$param to be set automatically (with a warning).

The main parameterisation options are listed in Table 1 (other specialised options are listed in the Appendix).

The constant c in the relationship σ = k/
√

D + c is set to zero and not estimated unless ‘c’ appears explicitly
in the model. For example, model = list(sigmak ~ 1) fixes c = 0, whereas model = list(sigmak ~ 1,

c ~ 1) causes c to be estimated. The usefulness of this model has yet to be proven! By default an identity
link is used for ‘c’, which permits negative values; negative ‘c’ implies that for some densities (most likely
densities outside the range of the data) a negative sigma is predicted. If you’re uncomfortable with this
and require ‘c’ to be positive then set link = list(c = 'log') in secr.fit and specify a positive starting
value for it in start (using the vector form for that argument of secr.fit).

Initial values may be a problem as the scales for a0 and sigmak are not intuitive. Assuming automatic initial
values can be computed for a half-normal detection function with parameters g0 and σ, the default initial
value for a0 is 2πg0σ2/10000, and for k, σ

√

D. If the usual automatic procedure (see ?autoini) fails then ad

hoc and less reliable starting values are used. In case of trouble, it is suggested that you first fit a very simple
(or null) model using the desired parameterisation, and then use this to provide starting values for a more
complex model. Here is an example (actually a trivial one for which the default starting values would have
been OK; some warnings are suppressed):

library(secr)

setNumThreads(18)
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fit0 <- secr.fit(captdata, model = a0~1, detectfn = 'HHN', trace = FALSE)

fitbk <- secr.fit(captdata, model = a0~bk, detectfn = 'HHN', start = fit0, trace = FALSE)

Models for surrogate parameters a0 and sigmak

The surrogate parameters a0 and sigmak are treated as if they are full ‘real’ parameters, so they appear in
the output from predict.secr, and may be modelled like any other ‘real’ parameter. For example, model =

sigmak ~ h2 is valid.

Do not confuse this with the modelling of primary ‘real’ parameters as functions of covariates, or built-in
effects such as a learned response.

Example

Among the datasets included with secr, only ovenCH provides a useful temporal sequence - 5 years of data
from mistnetting of ovenbirds (Seiurus aurocapilla) at Patuxent Research Refuge, Maryland. A full model for
annually varying density and detection parameters may be fitted with

msk <- make.mask(traps(ovenCH[[1]]), buffer = 300, nx = 25)

oven0509b <- secr.fit(ovenCH, model = list(D ~ session, sigma ~ session,

lambda0 ~ session + bk), mask = msk, detectfn = 'HHN', trace = FALSE)

This has 16 parameters and takes some time to fit.

We hypothesize that home-range (territory) size varied inversely with density, and model this by fixing the
parameter k. Efford and Mowat (2014) reported for this dataset that λ0 did not compensate for within-
year, between-individual variation in σ, but it is nevertheless possible that variation between years was
compensatory, and we model this by fixing a0. For good measure, we also allow for site-specific net shyness
by modelling a0 with the builtin effect ‘bk’:

oven0509bs <- secr.fit(ovenCH, model = list(D ~ session, sigmak ~ 1,

a0 ~ bk), mask = msk, detectfn = 'HHN', trace = FALSE)

## Warning: Using parameterization details$param = 5

The effect of including both sigmak and a0 in the model is to force parameterisation (5). The model estimates
a different density in each year, as in the previous model. Annual variation in D drives annual variation in σ
through the relation σy = k/

√

Dy where k (= sigmak/100) is a parameter to be estimated and the subscript
y indicates year. The detection function ‘HHN’ is the hazard-half-normal which has parameters σ and λ0.
We already have year-specific σy, and this drives annual variation in λ0: λ0y = a0X/(2πσ2

y) where a0X takes
one of two different values depending on whether the bird in question has been caught previously in this net.

This is a behaviourally plausible and fairly complex model, but it uses just 8 parameters compared to 16 in a
full annual model with net shyness. It may be compared by AIC with the full model (the model structure
differs but the data are the same). Although the new model has somewhat higher deviance (1858.5 vs 1851.6),
the reduced number of parameters results in a substantially lower AIC (∆AIC = 9.1).

In Fig. 3 we illustrate the results by overplotting the fitted curve for σy on a scatter plot of the separate
annual estimates from the full model. A longer run of years was analysed by Efford et al. (2016).
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Fig. 3. Fitted structural relationship between parameters D and σ (curve; k̂ = 0.747) and separate annual
estimates (ovenbirds mistnetted on Patuxent Research Refuge 2005–2009).

Limitations

Using a0 as a surrogate for a is unreliable if the distribution or intensity of sampling varies. This is because
a0 depends only on the parameter values, whereas a depends also on the detector layout and duration of
sampling. For example, if a different size of trapping grid is used in each session, a will vary even if the
detection parameters, and hence a0, stay the same. This is also true (a varies, a0 constant) if the same
trapping grid is operated for differing number of occasions in each session. It is a that really matters, and
constant a0 is not a sensible null model in these scenarios.

Parameterisations (4) and (5) make sense only if density D is in the model; an attempt to use these when
maximizing only the conditional likelihood (CL = TRUE) will cause an error.

Other notes

Detection functions 0–3 and 5–8 (‘HN’,‘HR’,‘EX’, ‘CHN’, ‘WEX’, ‘ANN’, ‘CLN’, ‘CG’) describe the probability
of detection g(d) and use g0 as the intercept instead of λ0. Can parameterisations (3) and (5) also be used
with these detection functions? Yes, but the user must take responsibility for the interpretation, which is less
clear than for detection functions based on the cumulative hazard (14–19, or ‘HHN’, ‘HHR’, ‘HEX’, ‘HAN’,
‘HCG’, ‘HVP’). The primary parameter is computed as g0 = 1 − exp(−a0/(2πσ2)).

In a sense, the choice between detection functions ‘HN’ and ‘HHN’, ‘EX’ and ‘HEX’ etc. is between two
parameterisations, one with half-normal hazard λ(d) and one with half-normal probability g(d), always with
the relationship g(d) = 1 − exp(−λ(d)) (using d for the distance between home-range centre and detector). It
may have been clearer if this had been programmed originally as a switch between ‘hazard’ and ‘probability’
parameterisations, but this would now require significant changes to the code and is not a priority.

If a detection function is specified that requires a third parameter (e.g., z in the case of the hazard-rate
function ‘HR’) then this is carried along untouched.

It is possible that home range size, and hence σ, varies in a spatially continuous way with density. The sigmak
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parameterisation does not work when density varies spatially within one population because of the way
models of state variables (D) and detection variables (g0, λ0, σ) are separated within secr. Non-Euclidean
distance methods allow a workaround as described in secr-noneuclidean.pdf and Efford et al. (2016).
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Appendix: additional parameterisation codes

Some parameterisation options were not described in the main text because they are not intended for general
use and their implementation may be incomplete (e.g., not allowing covariates).

During the development of SECR, Gardner et al. (2009) used a parameterisation of detection in competing
multi-catch traps that differed from that used by Borchers and Efford (2008) for the same model. This was
included in secr for comparative purposes, but appears to have no particular advantages and was dropped in
secr 2.10.0.

Although parameterisations (2) and (6) (Table) promise a ‘pure’ implementation in terms of the effective
sampling area a rather than the surrogate a0, this option has not been implemented and tested as extensively
as that for a0 (parameterisation 3). The transformation to determine λ0 or g0 requires numerical root finding,
which is somewhat slow. Also, assuming constant a does not make sense when either the detector array or
the number of sampling occasions varies, as both of these must affect a. Use at your own risk!

Appendix table. Additional parameterisation codes

Code Description Parameters Parameter names Note

1 Gardner et al. (2009) multi-catch trap secr < 2.10.0
2 Effective sampling area a esa
6 2 & 4 combined k, c, a sigmak, c and esa
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