
What could possibly go wrong? Troubleshooting spatially explicit

capture–recapture models in secr 5.2

Murray Efford

2025-01-26

Contents

Introduction 1

When secr.fit fails 2

Bias limit exceeded . 2
Initial log likelihood NA . 2
Variance calculation failed . 3
Log likelihood becomes NA or improbably large after a few evaluations 4
Possible maximization error: nlm code 3 . 4
Possible maximization error: nlm code 4 . 5
secr.fit requests more memory than is available . 6
Covariate factor levels differ between sessions . 7
Estimates from finite mixture models appear unstable . 7

Faster is better 7

Fast proximity models . 7
Mask tuning . 7
Individual mask subsets . 7
Conditional likelihood . 7
Parallel fitting of multiple models . 8
Mashing . 8
Reducing complexity (session- or group-specific models) . 9
Collapsing occasions . 9
Collapsing detectors . 10
“multi” detector type instead of “proximity” . 10
Some models are just slower than others . 10

References 10

Introduction

A lot can go wrong when fitting spatially explicit capture–recapture (SECR) models. This vignette assembles
a list of known difficulties with the R package secr 5.2, with examples, and suggests some solutions. It largely
supercedes the Troubleshooting help page in secr. Potential problems with density surface models are also
discussed in secr-densitysurfaces.pdf.

Speed issues are also addressed.

1

https://www.otago.ac.nz/density/pdfs/secr-densitysurfaces.pdf

When secr.fit fails

Bias limit exceeded

Suppose we omitted to specify the buffer argument for the first snowshoe hare model in secr-tutorial.pdf:

fit <- secr.fit (hareCH6, trace = FALSE)

Warning messages:

1: In secr.fit(hareCH6, trace = FALSE) : using default buffer width 100 m

2: In bufferbiascheck(output, buffer, biasLimit) :

predicted relative bias exceeds 0.01 with buffer = 100

The second warning message is clearly a consequence of the first: relying on the 100-m default buffer for
an animal as mobile as the snowshoe hare is likely to cause mask truncation error. This is easily fixed by
following advice on choosing the buffer width in secr-tutorial.pdf or secr-habitatmasks.pdf.

A check for mask truncation bias1 is performed routinely by secr.fit after fitting a model that relies on the
‘buffer’ argument. It may be avoided by setting biasLimit = NA or providing a pre-computed habitat mask
in the ‘mask’ argument.

Initial log likelihood NA

Maximization will fail completely if the likelihood cannot be evaluated at the starting values. This will be
obvious with trace = TRUE. Otherwise, the first indication will be a premature end to fitting and a lot of
NAs in the estimates.

For an example, this section previously used the default starting values for the dataset infraCH (Oligosoma

infrapunctatum skinks sampled with pitfall traps over two 3-occasion sessions labelled ‘6’ and ‘7’). Unfortu-
nately, those now seem to work, so we have to contrive an example by specifying a bad starting value for
sigma:

fit <- secr.fit(infraCH, buffer = 25, start = list(sigma = 2), trace = TRUE)

Checking data

Preparing detection design matrices

Preparing density design matrix

Finding initial parameter values...

Initial values D = 253.935, g0 = 0.12865, sigma = 2.87777

Maximizing likelihood...

Eval Loglik D g0 sigma

1 NA 5.5371 -1.9130 0.6931

2 NA 5.5371 -1.9130 0.6931

3 NA 5.5371 -1.9130 0.6931

4 NA 5.5371 -1.9130 0.6931

5 NA 5.5371 -1.9130 0.6931

6 NA 5.5376 -1.9130 0.6931

7 NA 5.5371 -1.9129 0.6931

8 NA 5.5371 -1.9130 0.6932

9 NA 5.5382 -1.9130 0.6931

10 NA 5.5376 -1.9129 0.6931

11 NA 5.5376 -1.9130 0.6932

12 NA 5.5371 -1.9128 0.6931

13 NA 5.5371 -1.9129 0.6932

14 NA 5.5371 -1.9130 0.6933

1The positive bias that results when the buffer width for a detector array in continuous habitat is too small to encompass the
centres of all animals potentially detected.

2

https://www.otago.ac.nz/density/pdfs/secr-tutorial.pdf
https://www.otago.ac.nz/density/pdfs/secr-tutorial.pdf
https://www.otago.ac.nz/density/pdfs/secr-habitatmasks.pdf

Completed in 4.11 seconds at 11:07:29 26 Jan 2025

Unsurprisingly, the problem can be addressed by manually providing a better starting value for sigma:

fit1 <- secr.fit(infraCH, buffer = 25, start = list(sigma = 5), trace = FALSE)

The original problem seems to have been due to a discrepancy between the two sessions (try RPSV(infraCH,

CC = TRUE)). The default sigma was suitable for the first session and not the second, whereas a larger sigma
suits both. Rather than manually providing the starting value we could have directed secr.fit to use the
second session for determining starting values:

fit2 <- secr.fit(infraCH, buffer = 25, details = list(autoini = 2), trace = FALSE)

Variance calculation failed

If warnings had not been suppressed in the preceding example we would have seen

Warning message:

In secr.fit(infraCH, buffer = 25, details = list(autoini = 2), trace = FALSE) :

at least one variance calculation failed

Examination of the output would reveal missing values for SE, lcl and ucl in both the coefficients and
predicted values for g0.

Failure to compute the variance can be a sign that the model is inherently non-identifiable or that the
particular dataset is inadequate (e.g., Gimenez et al. 2004). However, here it is due to a weakness in the
default algorithm. Call secr.fit with method = "none" to recompute the variance-covariance matrix using
a more sophisticated approach:

fit2r <- secr.fit(infraCH, buffer = 25, start = fit2, method = "none")

Checking data

Preparing detection design matrices

Preparing density design matrix

Computing Hessian with fdHess in nlme

1 -2260.348 5.5120 -2.2324 1.4908

2 -2260.354 5.5175 -2.2324 1.4908

3 -2260.349 5.5120 -2.2302 1.4908

4 -2260.350 5.5120 -2.2324 1.4922

5 -2260.355 5.5065 -2.2324 1.4908

6 -2260.349 5.5120 -2.2347 1.4908

7 -2260.350 5.5120 -2.2324 1.4893

8 -2260.358 5.5175 -2.2302 1.4908

9 -2260.360 5.5175 -2.2324 1.4922

10 -2260.352 5.5120 -2.2302 1.4922

11 -2260.348 5.5120 -2.2324 1.4908

Completed in 2.95 seconds at 11:08:23 26 Jan 2025

predict(fit2r)

$`session = 6`

link estimate SE.estimate lcl ucl

D log 247.63779973 13.981206447 221.71638255 276.5897547

g0 logit 0.09687409 0.008728527 0.08106316 0.1153816

sigma log 4.44043238 0.165847631 4.12709480 4.7775592

##

$`session = 7`

link estimate SE.estimate lcl ucl

3

D log 247.63779973 13.981206447 221.71638255 276.5897547

g0 logit 0.09687409 0.008728527 0.08106316 0.1153816

sigma log 4.44043238 0.165847631 4.12709480 4.7775592

The trapping sessions were only 4 weeks apart in spring 1995. We can further investigate session differences
by fitting a session-specific model. The fastest way to fit fully session-specific models is to fit each session
separately; lapply here applies secr.fit separately to each component of infraCH:

fits3 <- lapply(infraCH, secr.fit, buffer = 25, trace = FALSE)

class(fits3) <- "secrlist" # ensure secr will recognise the fitted models

predict(fits3)

$`6`

link estimate SE.estimate lcl ucl

D log 255.7579138 28.42822216 205.8286836 317.7988090

g0 logit 0.1712704 0.03017688 0.1199024 0.2386769

sigma log 2.5190381 0.18211346 2.1866408 2.9019641

##

$`7`

link estimate SE.estimate lcl ucl

D log 278.021196 18.90440921 243.36946911 317.6067460

g0 logit 0.098948 0.01119056 0.07907564 0.1231466

sigma log 4.951002 0.22155683 4.53545614 5.4046209

Notice that there is no issue with starting values when the sessions are treated separately. The skinks
appeared to enlarge their home ranges as the weather warmed; they may also have become more active
overall2. It is plausible that density did not change: the estimate increased slightly, but there is substantial
overlap of confidence intervals.

Log likelihood becomes NA or improbably large after a few evaluations

The default maximization method (Newton-Raphson in function nlm) takes a large step away from the initial
values at evaluation np + 3 where np is the number of estimated coefficients. This often results in a very
negative or NA log likelihood, from which the algorithm quickly returns to a reasonable part of the parameter
space. However, for some problems it does not return and estimation fails3. Two solutions are suggested:

• change to the more robust Nelder-Mead maximization algorithm

secr.fit(CH, method = "Nelder-Mead", ...)

• vary the scaling of each parameter in nlm by passing the typsize (typical size) argument. The default
is typsize = rep(1, np). Suppose your model has four coefficients and it is the second one that
appears to be behaving wildly:

secr.fit(CH, typsize = c(1, 0.1, 1, 1), ...)

In these examples CH is your capthist object and ... indicates other arguments of secr.fit.

Possible maximization error: nlm code 3

The default algorithm for numerical maximization of the likelihood is nlm in the stats package. That uses a
Newton-Raphson algorithm and numerical derivatives. It was chosen because it is significantly faster than
the alternatives. However, it sometimes returns estimates with the ambiguous result code 3, which means
that the optimization process terminated because “[the] last global step failed to locate a point lower than
estimate. Either estimate is an approximate local minimum of the function or steptol is too small.”

2Home-range area increased about 4-fold; g0 showed some compensatory decrease, but compensation was incomplete, implying
increased total activity (treating g0 as an estimate of λ0; see Efford and Mowat 2014).

3You may also get weird messages about infinite densities; these messages are due to be removed in the next release.

4

Here is an example:

fit3 <- secr.fit(infraCH, buffer = 25, model = list(g0~session, sigma~session),

details = list(autoini = 2), trace = FALSE)

Warning message:

In secr.fit(infraCH, buffer = 25, model = list(g0 session, sigma :

possible maximization error: nlm returned code 3. See ?nlm

The results seem usually to be reliable even when this warning is given. If you are nervous, you can try a
different algorithm in secr.fit – “Nelder-Mead” is recommended. We can derive starting values from the
earlier fit:

fit3nm <- secr.fit(infraCH, buffer = 25, model = list(g0~session, sigma~session),

method = "Nelder-Mead", start = fit3, trace = FALSE)

There is no warning. Comparing the density estimates we see a trivial difference in the SE and confidence
limits and none at all in the estimates themselves:

collate(fit3, fit3nm)[1,,,'D']

estimate SE.estimate lcl ucl

fit3 271.9450 15.78342 242.7279 304.679

fit3nm 271.9115 15.80825 242.6513 304.700

This suggests that only the variance-covariance estimates were in doubt, and it would have been much quicker
merely to check them with method = "none" as in the previous section.

Possible maximization error: nlm code 4

The nlm Newton-Raphson algorithm may also finish with the result code 4, which means that the optimization
process terminated when the maximum number of iterations was reached (“iteration limit exceeded”). The
maximum is set by the argument iterlim which defaults to 100 (each ‘iteration’ uses several likelihood
evaluations to numerically determine the gradient for the Newton-Raphson algorithm).

The number of iterations can be checked retrospectively by examining the nlm output saved in the ‘fit’
component of the fitted model. Ordinarily nlm uses less than 50 iterations (for example fit3fititerations

= 26).

A ‘brute force’ solution is to increase iterlim (secr.fit() passes iterlim directly to nlm()) or to re-fit
the model starting at the previous solution (start = oldfit). This is not guaranteed to work. Alternative
algorithms such as method = 'Nelder-Mead' are worth trying, but they may struggle also.

There does not appear to be a universal solution. Slow or poor fitting seems more common when there
are many beta parameters, and when one or more parameters is very imprecise, at a boundary, or simply
unidentifiable. It is suggested that you examine the coefficients of the provisional result with coef(fit) and
seek to eliminate those that are not identifiable.

Tricks include:

• combining levels of poorly supported factor covariates
• fixing the value of non-identifiable beta parameters with details argument fixedbeta

• ensuring that all levels of a factor x factor interaction are represented in the data (possibly by defining
a single factor with valid levels)

• changing the coding of factor covariates with details argument contrasts.

The following code demonstrates fixing a beta parameter, although it is neither needed nor recommended in
this case.

review the fitted values

coef(fit3)

5

beta SE.beta lcl ucl

D 5.6056000 0.05799021 5.4919412 5.7192587

g0 -1.6260666 0.19675725 -2.0117038 -1.2404295

g0.session7 -0.5765111 0.22076129 -1.0091953 -0.1438270

sigma 0.9194866 0.07126630 0.7798072 1.0591659

sigma.session7 0.6823380 0.08207937 0.5214654 0.8432106

extract the coefficients

betafix <- coef(fit3)$beta

set first 4 values to NA as we want to estimate these

betafix[1:4] <- NA

betafix

[1] NA NA NA NA 0.682338

refit, holding last coefficient constant

fit3a <- secr.fit(infraCH, buffer = 25, model = list(g0~session, sigma~session),

details = list(autoini = 2, fixedbeta = betafix), trace = FALSE)

coef(fit3a)

beta SE.beta lcl ucl

D 5.6056131 0.05824656 5.4914520 5.7197743

g0 -1.6264166 0.14206309 -1.9048552 -1.3479781

g0.session7 -0.5762843 0.13087380 -0.8327923 -0.3197764

sigma 0.9195882 0.03781615 0.8454699 0.9937065

Note that the estimated coefficients (‘beta’) have not changed, but the estimated ‘SE.beta’ of each detection
parameter has dropped - a result of our spurious claim to know the true value of ‘sigma.session7’.

There is no direct mechanism for holding the beta parameters for different levels of a factor (e.g., session)
at a single value. The effect can be achieved by defining a new factor covariate with combined levels.

secr.fit requests more memory than is available

In secr 5.2 the memory required by the external C code is at least 32 × C × M × K bytes, where C is the
number of distinct sets of values for the detection parameters (across all individuals, occasions, detectors and
finite mixture classes), M is the number of points in the habitat mask and K is the number of detectors.
Each distinct set of values appears as a row in a lookup table4 whose columns correspond to real parameters;
a separate parameter index array (PIA) has entries that point to rows in the lookup table. Four arrays with
dimension C × M × K are pre-filled with, for example, the double-precision (8-byte) probability an animal in
mask cell m is caught in detector k under parameter values c.

The number of distinct parameter sets C can become large when any real parameter (g0, lambda0, sigma) is
modelled as a function of continuous covariates, because each unit (individual, detector, occasion) potentially
has a unique level of the parameter. A rough calculation may be made of the maximum size of C for a given
amount of available RAM. Given say 6GB of available RAM, K = 200 traps, and M = 4000 mask cells, C
should be substantially less than 6e9 / 200 / 4000 / 32 ≈ 234. Allowance must be made for other memory
allocations; this is simply the largest.

There is a different lookup table for each session; the limiting C is for the most complex session. The memory
constraint concerns detection parameters only.

Most analyses can be re-configured to bring the memory request down to a reasonable number.

1. C may be reduced by replacing each continuous covariate with one using a small number of discrete
levels (e.g. the mid-points of weight classes). For example, weightclass <- 10 * trunc(weight/10)

+ 5 for midpoints of 10-g classes.

4If you are really keen you can see this table by running secr.fit with details = list(debug = 3) and typing Xrealparval

at the browser prompt (type Q to exit).

6

2. M can be reduced by building a habitat mask with an appropriate spacing (see secr-habitatmasks.pdf).
3. K might seem to be fixed by the design, but in extreme cases it may be appropriate to combine data

from adjacent detectors (see Collapsing detectors).

The mash function (see Mashing) may be used to reduce the number of detectors when the design uses many
identical and independent clusters. Otherwise, apply your ingenuity to simplify your model, e.g., by casting
‘groups’ as ‘sessions’. Memory is less often an issue on 64-bit systems (see also ?"Memory-limits").

Covariate factor levels differ between sessions

This is fairly explicit; secr.fit will stop if you include in a model any covariate whose factor levels vary
among sessions, and verify will warn if it finds any covariate like this. This commonly occurs in multi-session
datasets with ‘sex’ as an individual covariate when only males or only females are detected in one session.
Use the function shareFactorLevels (new in secr 3.0) to force covariates to use the same superset of levels
in all sessions.

Estimates from finite mixture models appear unstable

These models have known problems due to multimodality of the likelihood. See secr-finitemixtures.pdf.

Faster is better

There is nothing virtuous about waiting days for a model to fit if there is a faster alternative. Here are some
things you can do.

Fast proximity models

In secr 5.2 there are several tricks that make fitting of many models much faster. These tricks are implemented
by default in secr.fit, but may be turned off by setting the details argument ‘fastproximity = FALSE’. See
secr-version4.pdf for more.

Mask tuning

Consider carefully the necessary extent of your habitat mask and the acceptable cell size (secr-habitatmasks.pdf
has detailed advice). If your detectors are clustered then your mask may have gaps between the clusters.
Masks with more than 2000 points are generally excessive (and the default is about 4000!).

Individual mask subsets

secr 5.2 allows the user to customise the mask for each detected animal by considering only a subset of
points. The subset is defined by a radius in metres around the centroid of detections; set this using the
details argument ‘maxdistance’. Speed gains vary with the layout, but can exceed 2-fold. Bias results when
the radius is too small (try 5σ).

Conditional likelihood

The default in secr.fit is to maximize the full likelihood (i.e., to jointly fit both the state process and the
observation process). If you do not need to model spatial, temporal or group-specific variation in density (the
sole real parameter of the state model) then you can save time by first fitting only the observation process5.
This is achieved by maximizing only the likelihood conditional on n, the number of detected individuals
(Borchers and Efford 2008). Conditional likelihood maximization is selected in secr.fit by setting CL =

TRUE.

5Selecting an observation model with CL = TRUE (and first focussing on detection parameters) is a good strategy even if you
intend to model density later. It may occasionally be desirable to re-visit the selection if covariates can affect both density and
detection parameters.

7

https://www.otago.ac.nz/density/pdfs/secr-habitatmasks.pdf
https://www.otago.ac.nz/density/pdfs/secr-finitemixtures.pdf
https://www.otago.ac.nz/density/pdfs/secr-version4.pdf
https://www.otago.ac.nz/density/pdfs/secr-habitatmasks.pdf

fit <- secr.fit(hareCH6, buffer = 250, trace = FALSE) # default CL = FALSE

fitCL <- secr.fit(hareCH6, buffer = 250, CL = TRUE, trace = FALSE)

Fitting time is reduced by 47% because maximization is over two parameters (g0, sigma) instead of three.
The relative reduction will be less for more complex detection models, but still worthwhile.

Having selected a suitable observation model with CL = TRUE you can then either resort to a full-likelihood
fit to estimate density, or compute a Horvitz-Thompson-like (HT) estimate in function derived. In models

without individual covariates the HT estimate is n/a(θ̂) where n is the number of detected individuals, θ
represents the parameters of the observation model, and a is the effective sampling area as a function of the
estimated detection parameters.

Compare

predict(fit) # CL = FALSE

link estimate SE.estimate lcl ucl

D log 1.46598669 0.19131239 1.13636069 1.89122784

g0 logit 0.06158399 0.00930047 0.04568552 0.08253658

sigma log 68.34577423 4.46931480 60.13241800 77.68097491

derived(fitCL) # CL = TRUE

estimate SE.estimate lcl ucl CVn CVa CVD

esa 46.385111 NA NA NA NA NA NA

D 1.465988 0.190512 1.137563 1.889231 0.1212678 0.04671547 0.1299547

Estimated density is exactly the same, to 6 significant figures (1.46599). This is expected when n is Poisson;
slight differences arise when n is binomial (because the number of animals N in the masked area is considered
fixed rather than random). The estimated variance differs slightly - that from derived follows an unpublished
and slightly ad hoc procedure (Borchers and Efford 2007).

Parallel fitting of multiple models

Your computer almost certainly has multiple cores, allowing computations to be run in parallel. The function
par.secr.fit is no longer the preferred way to use multiple cores. Multi-threading in secr.fit uses multiple
cores by default (i.e. unless you specify ncores = 1). The default number of threads (cores) is one less than
the maximum available. See ?Parallel for more.

Mashing

Mashing is a very effective way of speeding up estimation when the design uses many replicate clusters of
detectors, each with the same geometry, and far enough apart that animals are not detected on more than
one. The approach for M clusters is to overlay all data as if from a single cluster; the estimated density
will be M times the per-cluster estimate, and SE etc. will be inflated by the same factor. This relies on
individuals being detected independently of each other, which is a standard assumption in any case. The
present implementation assumes density is uniform.

We describe in general terms an actual example in which 18 separated clusters of 12 traps were operated
on 6 occasions. Each cluster had the same geometry (two parallel rows of traps separated by 200 m along
and between rows). Trap numbering was consistently up one row and down the other. The capthist object
CH included detections of 150 animals in the 216 traps. To mash these data we first assign attributes for
the cluster number (clusterID) and the sequence number of each trap within its cluster (clustertrap). The
function mash then collapses the data as if all detections were made on one cluster. A mask based on this
single notional cluster has many fewer points than a mask with the same spacing spanning all clusters.

clustertrap(traps(CH)) <- rep(1:12,18)

clusterID(traps(CH)) <- rep(1:18, each = 12)

8

https://www.otago.ac.nz/density/pdfs/Supplement%20to%20Borchers%20and%20Efford%20v2.pdf

mashedCH <- mash(CH)

mashedmask <- make.mask(traps(mashedCH), buffer = 900, spacing = 100, type = "trapbuffer")

fitmash <- secr.fit(mashedCH, mask = mashedmask)

The model for the mashed data fitted in 4% of the time required for the original. The mashed estimate of
density shrank by 2% in this case, which is probably due to slight variation among clusters in the actual
spacing of traps (one cluster was arbitrarily chosen to represent all clusters). Mashing prevents the inclusion
of cluster-specific detail in the model (such as discontinuous habitat near the traps). For further details see
?mash.

Reducing complexity (session- or group-specific models)

Simultaneous estimation of many parameters can be painfully slow, but it can be completely avoided. If your
model is fully session- or group-specific then it is much faster to analyse each group separately. For sessions
this is can be done simply with lapply above and in secr-multisession.pdf). For groups you may need to
construct new capthist objects using subset to extract groups corresponding to the levels of one or more
individual covariates.

Collapsing occasions

If there is no temporal aspect to the model you want to fit (such as a behavioural response) and detectors are
independent (not true for traps i.e. “multi”) then it is attractive to collapse all sampling occasions. This
happens automatically by default for ‘proximity’ and ‘count’ detectors. For example,

mask

msk <- system.file("extdata/GSMboundary.shp", package = "secr") |>

sf::st_read(quiet = TRUE) |> sf::st_geometry() |>

make.mask(traps(blackbearCH), buffer = 6000, type = 'trapbuffer', poly = _)

fit models

setNumThreads(3) # slow things down

[1] 3

default for 'proximity' detectors: 'fastproximity'

bbfitfast <- secr.fit(blackbearCH, mask = msk, trace = FALSE)

turn 'fastproximity' off

bbfitslow <- secr.fit(blackbearCH, mask = msk, trace = FALSE,

details = list(fastproximity = FALSE))

fits <- secrlist(bbfitfast, bbfitslow)

collate(fits)[,,,'D']

estimate SE.estimate lcl ucl

bbfitfast 0.008435471 0.0008189036 0.006977014 0.0101988

bbfitslow 0.008435473 0.0008189040 0.006977016 0.0101988

sapply(fits, '[[', 'proctime')

bbfitfast.elapsed bbfitslow.elapsed

2.86 7.39

Data may be collapsed in reduce.capthist without loss of data by choosing ‘outputdetector’ carefully
and setting by = “ALL”. The collapsed capthist object receives a usage attribute equal to the sum of
occasion-specific usages. In this case usage is the number of collapsed occasions (10) and the collapsed model
fits a Binomial probability with size = 10 rather than a Bernoulli probability per occasion.

9

https://www.otago.ac.nz/density/pdfs/secr-multisession.pdf

Collapsing detectors

The theoretical (but often unrealised) benefit from collapsing occasions has a spatial analogue: if there are
many detectors and they are closely spaced relative to animal movements σ then nearby detectors may be
aggregated into new notional detectors located at the centroid. The reduce.traps method has an argument
‘span’ explained as follows in the help –

If span is specified a clustering of detector sites will be performed with hclust and detectors will
be assigned to groups with cutree. The default algorithm in hclust is complete linkage, which
tends to yield compact, circular clusters; each will have diameter less than or equal to span.

“multi” detector type instead of “proximity”

The type of the detectors is usually determined by the sampling reality. For example, if individuals can
physically be detected at several sites on one occasion then the “proximity” detector type is preferred over
“multi”. However, if data are very sparse, so that individuals in practice are almost never observed at multiple
sites on one occasion, then the detectors may as well by of type “multi”, in the sense that there is no
observable difference between the two types of detection process. “multi” models used to fit much more
quickly than “proximity” models, and this is still true for elaborate or time-dependent models that cannot
use the ‘fastproximity’ option.

Some models are just slower than others

Detector covariates are a particular problem. Models with learned responses take slightly longer to fit.

References

Borchers, D. L. and Efford, M. G. (2007) Supplements to Biometrics paper. Available online at https:
//www.otago.ac.nz/density.

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture–recapture
studies. Biometrics 64, 377–385.

Gimenez, O., Viallefont, A., Catchpole, E. A., Choquet, R. and Morgan, B. J. T. (2004) Methods for
investigating parameter redundancy. Animal Biodiversity and Conservation 27, 561–572.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from capture
data on closed animal populations. Wildlife Monographs No. 62.

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture–recapture data. Ecology 89,
2281–2289.

10

https://www.otago.ac.nz/density
https://www.otago.ac.nz/density

	Introduction
	When secr.fit fails
	Bias limit exceeded
	Initial log likelihood NA
	Variance calculation failed
	Log likelihood becomes NA or improbably large after a few evaluations
	Possible maximization error: nlm code 3
	Possible maximization error: nlm code 4
	secr.fit requests more memory than is available
	Covariate factor levels differ between sessions
	Estimates from finite mixture models appear unstable

	Faster is better
	Fast proximity models
	Mask tuning
	Individual mask subsets
	Conditional likelihood
	Parallel fitting of multiple models
	Mashing
	Reducing complexity (session- or group-specific models)
	Collapsing occasions
	Collapsing detectors
	``multi'' detector type instead of ``proximity''
	Some models are just slower than others

	References

