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Introduction

This vignette is a guide for those taking their first steps in fitting spatially explicit capture-recapture (SECR)
models with the R package secr 5.2. The Alaskan snowshoe hare data of Burnham and Cushwa are used as
an example. This dataset was first presented by Otis et al. (1978) and has been much used in the exploration
of models for heterogeneous capture probability.

SECR data and models

SECR data are observations of marked animals at known locations. Observations result from a well-defined
regime of spatial sampling. Sampling is most commonly done with traps, cameras, or some other type of
passive detector.



The purpose of the analysis is to estimate parameters of the animal population, particularly the population
density. Density is defined as the intensity of a spatial point pattern. Each point represents the enduring
location of an animal, its activity center, roughly speaking. In order to estimate density from a sample we
must account for the sampling process. The process is inherently spatial: each animal is more likely to be
detected near its activity centre, and less likely to be detected far away.

A SECR model combines a model for the point process (the state model) and a model for distance-dependent
detection (the observation model). We obtain an unbiased estimate of population density (and other
parameters) by jointly fitting the state and observation models.

Although these ideas extend to sampling of open populations, in this document (and throughout the secr
package) we are concerned only with closed populations. A closed population is one in which the composition
of the population and the activity distributions of individuals can be assumed fixed for the duration of
sampling.

Snowshoe hare data
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"In 1972, Burnham and Cushwa (pers. comm.) laid out a livetrapping grid in a black spruce
forest 30 miles (48.3 km) north of Fairbanks, Alaska. The basic grid was 10 x 10, with traps
spaced 200 feet (61 m) apart. Trapping for snowshoe hares Lepus americanus was carried out for
9 consecutive days in early winter. Traps were not baited for the first 3 days, and therefore we
have chosen to analyze the data from the last 6 days of trapping." Otis et al. (1978:36)

Getting the data together

The raw data have been prepared as two text files'. They may be downloaded from https://www.otago.ac
.nz/density /examples/. We assume the files are in your R working directory; use setwd to change that if
necessary.

1These data were provided with the CAPTURE software and have been reshaped into the standard input format for DENSITY
(Efford 2012) and secr using the code in Appendix 1.
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The capture file “hareCH6capt.txt” has one line per capture and four columns (the header lines are commented
out and are not needed). Here we display the first 6 lines. The first column is a session label derived from
the original study name; it becomes significant for multi-session datasets (secr-multisession.pdf).

# Burnham and Cushwa snowshoe hare captures
# Session ID Occasion Detector
wickershamunburne 1 2 0201
wickershamunburne 19 1 0501
wickershamunburne 72 5 0601
wickershamunburne 73 6 0601

The trap layout file “hareCH6trap.txt” has one row per trap and columns for the detector label and x-
and y-coordinates. We display the first 6 lines. The detector label is used to link captures to trap sites.
Coordinates can relate to any rectangular coordinate system; secr will assume distances are in metres. These
coordinates simply describe a 10 x 10 square grid with spacing 60.96 m. Do not use unprojected geographic
coordinates (latitude and longitude)?.

# Burnham and Cushwa snowshoe hare trap layout
# Detector x y

0101 0 O

0201 60.96 0

0301 121.92 0

0401 182.88 0

We can now load secr and read the data files to construct a capthist object. The detectors are single-catch
traps (maximum of one capture per animal per occasion and one capture per trap per occasion).

library(secr)

## This is secr 5.2.0 pre-release. For overview type 7secr

hareCH6 <- read.capthist("hareCH6capt.txt", "hareCH6trap.txt", detector = "single")

## No errors found :-)

The capthist object hareCH6 now contains almost all the information we need to fit a model. However, before
launching into that it’s good to take a deep breath and examine the raw data.

Exploring the data
The data should first be summarised and plotted.

summary (hareCH6)

## Object class capthist

## Detector type single

## Detector number 100

## Average spacing 60.96 m

## x-range 0 548.64 m

## y-range 0 548.64 m

##

## Counts by occasion

## 1 2 3 4 5 6 Total

2See secr-spatialdata.pdf.
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## n 16 28 20 26 23 32 145

## u 16 24 9 9 6 4 68
## f 25 22 13 5 1 2 68
## M(t+1) 16 40 49 58 64 68 68
## losses 0 0 0 0 0 0 0
## detections 16 28 20 26 23 32 145

## detectors visited 16 28 20 26 23 32 145
## detectors used 100 100 100 100 100 100 600

The last column (‘Total’) is a simple sum over other columns except for M(t+1).
The counts ‘n’, ‘w’, ‘> and ‘M(t+1)’ will make perfect sense if you are familiar with Otis et al. (1978), but
just in case you're not. ..

Table 1. Summary counts

Count Description

n number of distinct individuals detected on each occasion ¢

u number of individuals detected for the first time on each occasion t
f number of individuals detected on exactly t occasions

M(t+1) cumulative number of detected individuals on each occasion ¢

The conventional summary counts are all well and good?, but these are spatial data so we learn a lot by
mapping them. We use the plot method, which for capthist objects has additional arguments; we set tracks
= TRUE to join consecutive captures of each individual.

par(mar = c(1,1,3,1)) # reduce margins
plot (hareCH6, tracks = TRUE)

wickershamunburne
6 occasions, 145 detections, 68 animals

3And the minimum sufficient statistics for the non-spatial estimators in Otis et al. (1978) are functions of these counts.



Fig. 1. Snowshoe hare spatial capture data plotted in secr. Trap sites (red crosses) are 61 m apart. Grid
lines (grey) are 100 m apart (use arguments gridl and gridsp to suppress the grid or vary its spacing).
Colours help distinguish individuals, but some are recycled.

The most important insight from Fig. 1 is that individuals tend to be recaptured near their site of first
capture. This is expected when the individuals of a species occupy home ranges. In SECR models the
tendency for detections to be localised is reflected in the spatial scale parameter o. Good estimation of o and
density D requires spatial recaptures (i.e. captures at sites other than the site of first capture).

Successive trap-revealed movements can be extracted with the moves function and summarised with hist:
m <- unlist(moves(hareCH6))

par(mar = ¢(3.2,4,1,1), mgp = c(2.1,0.6,0)) # reduce margins

hist(m, breaks = seq(-61/2, 500,61), xlab = "Movement m", main = "")
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Fig. 2. Successive trap-revealed movements of snowshoe hares on 61-m grid.

About 30% of trap-revealed movements were of > 100 m (Fig. 2; try also plot(ecdf (m))), so we can be
sure that peripheral hares stood a good chance of being trapped even if their home ranges were centred well
outside the area plotted in Fig. 1.

The function RPSV with option CC = TRUE provides a biased estimate of the spatial scale o, ignoring the
problem that movements are truncated by the edge of the grid:

initialsigma <- RPSV(hareCH6, CC = TRUE)
cat("Quick and biased estimate of sigma =", initialsigma, "m\n")
## Quick and biased estimate of sigma = 63.6612 m

This estimate will be useful when we come to fit a model.

Fitting a simple model

Calling secr.fit

Next we fit the simplest possible SECR model with function secr.fit. Setting trace = FALSE suppresses
printing of intermediate likelihood evaluations; it doesn’t hurt to leave it out. We save the fitted model with
the name ‘fit’. Fitting is much faster if we use parallel processing in multiple threads - the number will depend
on your machine, but 7 is OK for Windows with a quad-core processor.

setNumThreads(7) # number of cores to use

## [1] 7



fit <- secr.fit (hareCH6, buffer = 4 * initialsigma, trace = FALSE)

## Warning: multi-catch likelihood used for single-catch traps

A warning is generated. The data are from single-catch traps, but there is no usable theory for likelihood-based
estimation from single-catch traps. This is not the obstacle it might seem, because simulations seem to show
that the alternative likelihood for multi-catch traps may be used without damaging the density estimates
(Efford, Borchers and Byrom 2009). It is safe to ignore the warning for now?. In order to avoid the warning
in later fits we reset the detector type to “multi”.

detector(traps(hareCH6)) <- "multi"

Reviewing the output

The output from secr.fit is an object of class ‘secr’ (confirm this with class(fit)). If you investigate the
structure of fit with str(£fit) it will seem to be a mess: it is a list with more than 25 components, none of
which contains the final estimates you are looking for.

To examine model output or extract particular results you should use one of the functions defined for the
purpose. Technically, these are S3 methods for the class ‘secr’. The key methods are print, plot, AIC, coef,
vecov and predict. Append ‘secr’ when seeking help e.g. ?print.secr.

Typing the name of the fitted model at the R prompt invokes the print method for secr objects and displays
a more useful report.

fit

##

## secr.fit(capthist = hareCH6, buffer = 4 * initialsigma, trace = FALSE)
## secr 5.2.0, 11:24:51 26 Jan 2025

##

## Detector type single

## Detector number 100

## Average spacing 60.96 m

## x-range 0 548.64 m

## y-range 0 548.64 m

##

## N animals : 68

## N detections ;145

## N occasions : 6

## Mask area : 106.129 ha

##

## Model : D~1 gO~1 sigma~1

## Fixed (real) : none

## Detection fn : halfnormal

## Distribution : poisson

## N parameters : 3

## Log likelihood : -607.988

## AIC :1221.98

## AICc : 1222.35

##

## Beta parameters (coefficients)

## beta  SE.beta 1cl ucl
## D 0.382512 0.1299543 0.127806 0.637218
## g0 -2.723728 0.1609133 -3.039112 -2.408343

4While noting that estimates of the detection parameter g0 are biased.



## sigma 4.224543 0.0653076 4.096543 4.352544
#i#
## Variance-covariance matrix of beta parameters

#i# D g0 sigma

## D 0.01688813 -0.00172943 -0.00162420

## g0 -0.00172943 0.02589311 -0.00737214

## sigma -0.00162420 -0.00737214 0.00426508

##

## Fitted (real) parameters evaluated at base levels of covariates
#i#t link estimate SE.estimate lcl ucl

## D log 1.4659625 0.19131535 1.1363327 1.8912119

## g0 logit 0.0615877 0.00929993 0.0456899 0.0825387
## sigma log 68.3432877 4.46809770 60.1320429 77.6758072

The report comprises these sections that you should identify:

o function call and time stamp

e summary of the data

 description of the model, including the maximized log likelihood, Akaike’s Information Criterion AIC
« estimates of model coefficients (beta parameters)

« estimates of variance-covariance matrix of the coefficients

o estimates of the ‘real’ parameters

The last three items are generated by the coef, vcov and predict methods respectively. The final table of
estimates is the most interesting, but it is derived from the other two. For our simple model there is one beta
parameter for each real parameter®. The estimated density is 1.47 hares per hectare, 95% confidence interval
1.14-1.89 hares per hectare®.

The other two real parameters jointly determine the detection function that you can easily plot with 95%
confidence limits:

par(mar = c(4,4,1,1)) # reduce margins
plot(fit, limits = TRUE)

5We can get from beta parameter estimates to real parameter estimates by applying the inverse of the link function
e.g. D= exp(,@ D), and similarly for confidence limits; standard errors require a delta-method approximation (Lebreton et
al. 1992).

60ne hectare (ha) is 10000 m? or 0.01 km?.
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Choosing the buffer width

When fitting the simple model with secr.fit we used buffer = 4 * initialsigma without any explanation.
Here it is. As far as we know, the snowshoe hare traps were surrounded by suitable habitat. We limit our
attention to the area immediately around the traps by specifying a habitat buffer. The buffer argument is a
short-cut method for defining the area of integration; the alternative is to provide a habitat mask in the mask
argument. Buffers and habitat masks are covered at length in secr-habitatmasks.pdf.

The theory of SECR tells us that buffer width is not critical as long as it is wide enough that animals at
the edge have effectively zero chance of appearing in our sample. The 40 suggestion is based on experience
with half-normal detection models”. We check that for the present model with the function esaPlot. The
estimated density® has easily reached a plateau at the chosen buffer width (dashed red line):

esaPlot (fit)
abline(v = 4 * initialsigma, lty = 2, col = 'red')

TThis is not just the tail probability of a normal deviate; think about how the probability of an individual being detected at
least once changes with (i) the duration of sampling (ii) the density of detector array.

8These are Horvitz-Thompson-like estimates of density obtained by dividing the observed number of individuals n by effective
sampling areas (Borchers and Efford 2008) computed as the cumulative sum over mask cells ordered by distance from the traps.
The algorithm treats the detection parameters as known and fixed.
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Choosing a detection function
o detection probability declines with distance according to a half-normal curve
We can try alternative shapes for the detection function (the decline in detection probability with distance).

secr offers several different shapes of detection function (see the list at ?detectfn). We need to sort these
out. All except ANN and HAN decline monotonically with distance. Three are only used for acoustic data
(BSS, SS, SSS). The simplest UN is not available for maximum likelihood model fitting, and several are
frankly exotic and almost never used (CHN, WEX, CLN, CG), as are ANN and HAN.

That leaves the half-normal, negative exponential, and hazard rate functions (HN, EX, HR) These differ
primarily in the length of their tails i.e. the probability they assign to very distant detections. The half-normal
makes distant detections very improbable, the negative exponential less so; The ‘hazard-rate’ function requires
a third parameter and potentially has a very long tail indeed.

Fit each of these and assess the effect. We use a wider buffer to allow for longer tails.

'"HN', trace = FALSE)
'"EX', trace FALSE)
'"HR', trace = FALSE)

fit.HN <- secr.fit (hareCH6, buffer = 6 * initialsigma, detectfn
fit.EX <- secr.fit (hareCH6, buffer 6 * initialsigma, detectfn
fit.HR <- secr.fit (hareCH6, buffer 6 * initialsigma, detectfn

How do the models compare? The last one (fit. HR) raised a warning from the post-fitting bias check that we
discuss more below. We bundle the fits together in an object of class secrlist — this is simply a convenience —
and then inspect the estimates:

fits <- secrlist(HN = fit.HN, EX = fit.EX, HR = fit.HR)

predict(fits)

## $HN

#i link estimate SE.estimate 1lcl ucl
## D log 1.4659045 0.19132904 1.1362559 1.8911901

## g0 logit 0.0616056 0.00929652 0.0457122 0.0825469
## sigma log 68.3310424 4.46115720 60.1318242 77.6482572

##

## $EX

## link estimate SE.estimate 1cl ucl
## D log 1.477150 0.1949285 1.141780 1.911027

## g0 logit 0.179717 0.0309931 0.126715 0.248579
## sigma log 39.917882  3.2925534 33.968523 46.909231
#



## $HR

## link estimate SE.estimate 1lcl ucl
## D log 1.354903 0.1936603 1.0253171 1.790434
## g0 logit 0.129109 0.0364615 0.0728016 0.218694
## sigma log 45.365504  8.4348624 31.6084802 65.110027
##t z log 3.115125  0.3134122 2.5588908 3.792269

Note how similar the density estimates are from HN and EX; HR not so much. The parameter named
‘sigma’ means a different thing for each function, so do not compare. To my mind this also applies to the
function-specific ‘g0’.

Formal model comparison by AIC places the longer-tailed functions EX and HR ahead of HN:

AIC(fits)

## model detectfn npar logLik AIC AICc  dAIC AICwt
## HR D~1 gO~1 sigma~1 z~1 hazard rate 4 -599.880 1207.76 1208.39 0.000 0.6758
## EX D~1 gO~1 sigma~1 exponential 3 -601.615 1209.23 1209.60 1.469 0.3242
## HN D~1 gO~1 sigma~1 halfnormal 3 -607.991 1221.98 1222.36 14.223 0.0000

The selection of HR is a worry because it has some annoying properties as we can see on this plot:

par(mar = c(4,4,2,2))
esaPlot (fits, max.buffer = 6 * initialsigma)
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Although the density estimates from HN and EX reach a plateau fairly promptly with increasing buffer width,
the estimates from HR do not. That means that estimates of density remain sensitive to buffer width out to
quite large distances. The sensitivity explains why the bias check raised a warning. It is an argument for
not using HR except where there is a natural boundary (check out habitat islands in secr-habitatmasks.pdf).
There is an unresolved research question here: Do real animals have such long tails?

Provisionally rejecting HR, we are left with EX as the preferred model for these data. HN delivers essentially
the same estimate of density.
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The model argument of secr.fit

Our initial model assumed that the detection of all individuals is governed by the same detection vs distance
curve at all detectors on all occasions. The ‘model’ argument of secr.fit allows this assumption to be
relaxed in particular ways.

Although this is a longish section, and one that can occupy a lot of time, be warned that the returns from
exhaustively pursuing the last sliver of improvement in fit are usually trivial. We rely on the robustness of
SECR models. The potential effects of most importance are learned responses and individual heterogeneity.

The ‘model” argument allows us to specify variation in each of the ‘real’ parameters (i.e. density D and the
detection parameters g0 © and sigma). In the default model each real parameter is constant (D ~ 1, g0 ~
1, sigma ~ 1), but the constant indicator ‘1’ in each formula may be replaced by a predictor, or perhaps a
combination of predictors. We focus on the detection parameters. The predictor may be

e a code for an automatically generated predictor, or
e the name of an individual, trap or session covariate.

Codes for automatically generated predictors are listed on the help page ?"secr detection models", and
we show a subset in Table 2. The most important in terms of an effect on estimates of density are those for
learned responses and unmodelled individual heterogeneity. Heterogeneity raises multiple issues that we do
not have space for here. We concentrate on learned responses.

Table 2. Automatic predictors commonly used to model detection parameters.

Code Description

b permanent global learned response

bk permanent detector-specific learned response
t time factor (one level for each occasion)

T time trend (integer covariate 0:(S-1))

g group (as specified by ‘groups’ argument)

h2 2-class finite mixture

session  session factor (one level for each session)

Learned responses

Otis et al. (1978) considered the possibility that the experience of capture induced a change in the probability
of capturing an individual on any later occasion. They called this a ‘behavioral response’, and henceforth it
has been labelled ‘b’. The model envisaged a permanent step change in behaviour

Spatial models may include more subtle effects. Most importantly, the learned response may be specific to
the detector location (code bk), rather than applying generally across all detectors (code b).

We consider the possibility of either sort of learned response in snowshoe hares:

fit.EXb <- secr.fit (hareCH6, buffer = 6 * initialsigma, detectfn = 'EX',
model = g0 ~ b, trace = FALSE)
fit .EXbk <- secr.fit (hareCH6, buffer = 6 * initialsigma, detectfn = 'EX',
model = g0 ~ bk, trace = FALSE)

For convenience we bundle the original (null) model and the two new models together in one object of class
‘secrlist”. That may be passed as a unit to other functions, particularly AIC:

9For some detection functions g0 is replaced by lambda0

11



fitsb <- secrlist(null = fits$EX, b = fit.EXb, bk = fit.EXbk)

AIC(fitsb)
## model detectfn npar logLik AIC AICc dAIC AICwt
## b D~1 gO~b sigma~1 exponential 4 -599.824 1207.65 1208.28 0.000 0.5167

## bk D~1 gO~bk sigma~1 exponential 4 -600.554 1209.11 1209.74 1.461 0.2489
## null D~1 gO~1 sigma~1 exponential 3 -601.615 1209.23 1209.60 1.581 0.2344

predict (fitsb)

## $null
## link estimate SE.estimate 1cl ucl
## D log 1.477150 0.1949285 1.141780 1.911027

## g0 logit 0.179717 0.0309931 0.126715 0.248579
## sigma log 39.917882  3.2925534 33.968523 46.909231

#it

## $b

## link estimate SE.estimate 1cl ucl
## D log 1.761366 0.3431801 1.2065516 2.571302

## g0 logit 0.117373 0.0393694 0.0593914 0.218794
## sigma log 40.158840  3.3229198 34.1561645 47.216438

##

## $bk

## link estimate SE.estimate 1cl ucl
## D log 1.482530 0.1988804 1.1411012 1.926118

## g0 logit 0.152243 0.0317553 0.0998089 0.225327
## sigma log 42.369044 4.0096983 35.2105346 50.982920

The global response model b comes out on top. However, the AIC differences among the three models (b, bk,
null) are very small. This would not be a problem, except that the density estimate from model b is noticeably
larger than the others, so it does matter which we choose. The learned response may be positive or negative.
The direction can be determined by the sign of the relevant coefficient (g0.bTRUE) in coef (fitsb$b). The
coefficient is 0.61 (95% CI -0.1 — 1.32), remembering that this relates to the link (logit) scale.

Results for predictor levels other than the base level

The default output from predict for estimates of the ‘real’ parameters is incomplete: it shows only the value
of g0 for a naive animal (b = 0). To see the estimates for both b = 0 and b = 1, and hence the magnitude of
the effect on the probability scale, we specify the ‘newdata’ argument of the predict method:'®

predict(fitsb$b, newdata = data.frame(b = 0:1), realnames = "g0")

## $b =0

## link estimate SE.estimate 1cl ucl
## g0 logit 0.117373 0.0393694 0.0593914 0.218794
##

## $b = 1°

## link estimate SE.estimate 1cl ucl

## g0 logit 0.196379  0.0349555 0.136672 0.273895

It will usually be necessary to specify ‘newdata’ like this to obtain the predicted values of real parameters at
different levels of the predictors. expand.grid is a handy alternative to data.frame if you want to see all
combinations of predictors.

10We also use the new argument ‘realnames’ to select only the parameter we want.
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Model averaging

One way to duck the problem of selecting a single model is to average over the models using AIC or AICc
model weights. There is a function for this:

modelAverage (fitsb, criterion = 'AICc')

## estimate SE.estimate 1cl ucl
## D 1.61447 0.3046794 1.118917 2.329509
## g0 0.13993 0.0456503 0.071803 0.254941

## sigma 40.60249 3.6132660 34.115556 48.322876

Our model-informed ‘best guess’ of the density comes out at 1.62 hares per hectare with 95% confidence
interval 1.12-2.34 hares per hectare.
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Appendix 1. Conversion of snowshoe hare data from CAPTURE
format.

First define a function to peek at text files:

displayLines <- function(filename, nlines, final = "") {
con <- file(filename)
cat(readLines(con,nlines), sep='\n')

if (final !'= "") cat(final, "\n")
close(con)

T

library(secr)

workdir <- 'd:/density secr 5.2/package data/snowshoehares/'
inpfile <- pasteO(workdir, 'hares.txt')

# check raw data

displayLines(inpfile, 9)

## data='Data from Burnham and Cushwa (in prep.), Lepus americanus, inter. Alaska.'
## format='(33x,a2,5x,18f2.0)"'
## read input data

## wickersham unburned fall 1975 1 410052002100004200
## wickersham unburned fall 1975 2 3200000071000000O00O0
## wickersham unburned fall 1975 3 5200000000007 26253
## wickersham unburned fall 1975 4 580000006716480017
## wickersham unburned fall 1975 5 59000000880089008T7
## wickersham unburned fall 1975 6 6 9000000596100 05 9510

# read raw data, skipping 3 header lines, and shape into a dataframe with one rTow
# per capture
tmp <- read.fortran(inpfile, format = c('A29','4X', 'A2','5X','9A4'), skip = 3)
capt <- data.frame(session = rep(tmp[,1], each = 9),

ID = rep(tmp[,2], each=9),

occasion = rep(1:9, nrow(tmp)),

trapID = as.character(t(tmpl[,3:11])),

stringsAsFactors = FALSE)
# drop mon-captures

capt <- capt[capt$trapID!= ' 0 0',]

# recode blanks to zero in trapID,

capt$trapID <- gsub(' ','0', capt$trapID)

# view first 6 captures (ordered by animal)

head(capt)

## session ID occasion trapID
## 1 wickersham unburned fall 1975 1 1 0401
## 3 wickersham unburned fall 1975 1 3 0502
## 5 wickersham unburned fall 1975 1 5 0201
## 8 wickersham unburned fall 1975 1 8 0402
## 10 wickersham unburned fall 1975 2 1 0302
## 14 wickersham unburned fall 1975 2 5 0701

# make trapping grid object

grid <- make.grid(nx = 10, ny = 10, spacing = 60.96, detector = 'single', ID = 'xy')
# construct capthist object

hareCH <- make.capthist(capt, grid)

# restrict to last 6 days
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hareCH6 <- subset(hareCH, occasions = 4:9)

write.capthist (hareCH6)

Appendix 2. List of key functions used in this tutorial.

Function Purpose

AIC* model selection, model weights

derived* compute density from effective sampling area

esaPlot cumulative plot esa or D vs buffer width

model Average* combine estimates using AIC or AICc weights

moves distances between capture locations

plot* plot ‘capthist’, ‘traps’ or ‘mask’

predict* ‘real” parameters for arbitrary levels of predictor variables
print*

read.capthist
RPSV

build capthist object from text files
‘root pooled spatial variance’, with CC = TRUE an estimate of oy

secr.fit maximum likelihood fit; result is a fitted ‘secr’ object
summary* summarise ‘capthist’, ‘traps’ or ‘mask’
* S3 method
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https://www.otago.ac.nz/density/html/AIC.secr.html
https://www.otago.ac.nz/density/html/derivedMS.html
https://www.otago.ac.nz/density/html/esaPlot.html
https://www.otago.ac.nz/density/html/modelAverage.html
https://www.otago.ac.nz/density/html/homerange.html
https://www.otago.ac.nz/density/html/plot.capthist.html
https://www.otago.ac.nz/density/html/predict.secr.html
https://www.otago.ac.nz/density/html/print.secr.html
https://www.otago.ac.nz/density/html/DENSITY.html
https://www.otago.ac.nz/density/html/homerange.html
https://www.otago.ac.nz/density/html/secr.fit.html
https://www.otago.ac.nz/density/html/print.secr.html
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