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Recently, Ottersen et al. (2001) reviewed the ecological
impacts of the North Atlantic climate oscillation
(NAO). The NAO is responsible for interannual and
decadal fluctuations in winter temperatures, precipita-
tion, wind conditions as well as distribution and fluxes
of currents on both sides of the North Atlantic Ocean
(Hurrell and van Loon 1997). A highly positive NAO
index (measured as the deviance from the average sea
level pressure difference between the Azores and Ice-
land) is associated with high temperatures, strong winds
and high levels of precipitation in northern Europe, and
low temperatures in eastern North America. A low
NAO index gives rise to the opposite conditions (Hur-
rell and van Loon 1997). The NAO can be seen as a
North Atlantic parallel to the El Nino-Southern-Oscil-
lation (ENSO) in the Pacific Ocean also resulting in
temporal and geographical fluctuations in temperature
and precipitation from the Indian Ocean to the Gulf of
Mexico (Allan et al. 1996).

Such large-scale climatic fluctuations are bound to
affect a multitude of ecological processes. Indeed, in
addition to the direct influence on the general biological
performance of various organisms, Ottersen et al.
(2001) also report studies demonstrating more complex
and indirect cascading effects in which NAO mediates
the outcome of interspecific competitive and predator-
prey/herbivore-plant interactions. However, despite the
mounting evidence that parasites can influence the com-
position and structure of natural communities
(Minchella and Scott 1991, Hudson and Greenman
1998), and that parasite transmission is often strongly
affected by weather conditions, there was no mention
of parasitism in the review. In the ecological literature,
this is not an unusual omission, as several authors have
emphasised recently (Mouritsen and Madsen 1994,
Huxham et al. 1995, Marcogliese and Cone 1997,
Morand and Gonzales 1997, Poulin 1999, Thomas et al.
1999, Skorping and Hogstedt 2001). To the authors’
defence, their review focused on papers that either
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investigated the influence of NAO directly or presented
time-series that would suggest the signature of this
climate oscillation. And to our knowledge, no study has
hitherto explicitly considered the impact of NAO on
host-parasite interactions.

Nevertheless, examples of ENSO-mediated parasite-
induced host dynamics do exist, and several papers
have directly or indirectly shown that parasite-induced
host population dynamics or distribution are governed
by short-term changes in weather conditions or general
climate change (see e.g. Harvell et al. 1999, Marcogliese
2001, and references in Table 1). To us, this clearly
justifies specific attention to the potential influence of
climate oscillations on host-parasite interactions, host
population dynamics, and consequently also on com-
munity structure.

Table 1 summarises a range of very different host-
parasite systems influenced by temperature in particu-
lar, but also by precipitation and ocean currents.
Although comprehensive, the list is certainly not ex-
haustive and only serves to illustrate the potential wide-
spread effect of climate oscillations on parasitism and
its consequences.

Although the oscillations will affect the climate al-
most worldwide throughout the year, they are basically
ocean phenomena restricted — in the case of the extra-
tropical oscillations — to the winter season (Allan et al.
1996, Hurrell and van Loon 1997). For this reason, we
have focused on host-parasite systems from near-
coastal areas where the winter sea surface temperature
may carry over through to the summer (Ottersen et al.
2001), and on parasites having life cycles that will
render them sensitive also to the winter and/or early
spring climate.

The first examples emphasise the direct impact on the
life-cycle processes of the parasites (especially transmis-
sion rates) whereas the remaining ones demonstrate
more complex cascade effects, in which the outcome
of the specific host-parasite interaction is found or
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Table 1. The influence of weather conditions on life-cycle processes of various parasites (general direct effects) and the cascading impact on host population and community
dynamics (indirect cascade effects) categorised according to ecosystem/habitat. Numbers refer to case studies dealt with in the text. Indication of climate oscillation (NAO or ENSO)
denotes the weather system expected to be relevant according to the geographical location of the case studies. The oscillation-related weather factor indicated in the fourth column
has a positive effect on either the associated process in the parasite life cycle or its interaction with the host. Q,, is the generalised 2-fold increase in a given biological process by

a temperature increase of 10°C.

Ecosystem, Habitat Host Parasite Oscillation, related factor and parasite life-cycle Known or expected level of  References
process impact
General direct effects
Marine and Molluscs Trematodes NAO/ENSO; high temperatures; temperature-  Parasite transmission Ginetsinskaya (1988), Shostak and
freshwater (digenean) dependent emergence of larval parasites Esch (1990), Lo and Lee (1996),
(> Q,-effect) Lyholt and Buchmann (1996),
Mouritsen and Jensen (1997)
Marine and Various Trematodes NAO/ENSO; high temperatures; Parasite transmission and Vanoverschelde (1982), Evans (1985),
freshwater (digenean) temperature-dependent infectivity of larval intensity Pechenik and Fried (1995), McCarthy
parasites (1999)
Marine and Various Trematodes NAO/ENSO; high temperatures; temperature-  Parasite transmission Erasmus (1972), Pfliger (1980),
freshwater (digenean) dependent egg and larval development Ginetsinskaya (1988), Ataev (1991)
(> Q,-effect)
Freshwater Fish Monogeneans NAO/ENSO; high temperatures; Parasite transmission Kearn (1986)
temperature-dependent parasite fecundity
(> Qq-effect)
Lake Fish Cestodes NAO/ENSO; low temperature; temperature- Parasite intensity Anderson (1974)
dependent parasite survival
Terrestial Birds and Nematodes NAO/ENSO; high temperatures and high Parasite transmission Smith and Grenfell (1985), Anderson
mammals levels of precipitation; temperature and (1992)
humidity dependent development rate and
survival of free-living larvae
Terrestial various Ticks NAO/ENSO; high temperatures and high levels Tick and disease Campbell and Glines (1979), Dufty
of precipitation; temperature and humidity (microparasite) transmission  and Campbell (1994), Zahler and
dependent development rates, survival and Gothe (1995), Vail and Smith (1998),
activity Chilton et al. (2000)
Indirect cascade effects
[1] Marine Gastropod/  Trematodes NAO; high spring temperatures; temperature- Host population and Jensen and Mouritsen (1992),
soft-bottom amphipod (digenean) dependent parasite-induced host mortality community structure Mouritsen et al. (1997, 1998)
intertidal
[2] Marine soft- Bivalve Trematode ENSO; high temperatures; temperature- Host population and Thomas and Poulin (1998), Thomas
bottom intertidal (digenean) dependent parasite-transmission community structure et al. (1998)
Marine rocky Gastropod  Trematodes NAO; high spring and low winter Host population Huxham et al. (1993)
intertidal (digenean) temperatures; temperature-dependent host
mortality
[3] Marine rocky Sea urchin ~ Amoeba NAO; high temperatures and wind generated Host population and Scheibling and Hennigar (1997)
subtidal coastal currents; temperature and current community structure
dependent host mortality and parasite dispersal
[3] Marine rocky Sea urchin ~ Nematode NAO; high temperatures; temperature- Host population and Hagen (1995a), Hagen 1995b)
subtidal dependent parasite development community structure
Coastal Corals E.g. virus ENSO; high temperatures; temperature- Host population Harvell et al. (2001), Wilson et al.
dependent parasite outbreak (2001)
[4] Coastal Bivalve Protozoa ENSO; high temperatures and low levels of Host population and Ford (1996), Kim and Powell (1998)

precipitation; temperature and salinity
dependent parasite development

distribution
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re-colonised by kelp and its associated community. The
development and transmission rate of P. invadens in-
crease exponentially with temperature, and the distribu-
tional range of the parasite is determined by coastal
currents. Accordingly, epizootic outbreaks of paramoe-
biasis are found to be associated with both unusually
high sea surface temperatures and storm activity; the
latter affects the coastal currents. The occurrence of
these meteorological phenomena is related to NAO
(Ottersen et al. 2001).

A similar system of alternating dominance of sea
urchins (same species) and kelp forests exists along the
west coast of Norway. Here, the sea urchins are hosts to
a directly transmitted mermithoid nematode (Echi-
nomermella matsi ) that frequently wipes out the sea
urchin population, an event followed by the recovery of
the kelp forest community. So far, these (irregular) cycles
have not been directly related to climatic conditions, but
NAO can easily be envisaged to play a significant role
in the severity of Echinomermella outbreaks: the devel-
opment rate of parasitic nematodes in their aquatic
poikilotherm hosts is a positive function of temperature
(Chubb 1980, 1982, De et al. 1986), and Echinomermella
larvae may very well be dispersed by currents. In western
Norway, the impact of NAO on the climate is particu-
larly strong and it is notable that the observed transition
from sea urchin dominated barren ground to immature
kelp forest at several Norwegian localities during the mid
1980s, coincided with high NAO indices (see Ottersen et
al. 2001).

[4] The parasitic protozoan Perkinsus marinus is wide-
spread in oyster populations (Crassostrea virginica)
ranging from the Gulf of Mexico to Chesapeake Bay
(Virginia, USA), and gives rise regularly to epizootic-like
host mortalities. The development rate of this protozoan
is strongly (positively) related to sea temperature and
salinity and the infection intensities in the Gulf of
Mexico as well as the parasites’ geographical distribu-
tion seem directly related to ENSO and global warming
in general. Hence, the climate oscillations’ impact on the
population dynamics of oysters appears largely mediated
by parasites.

[5] Ticks are common parasites of seabirds, and may
significantly depress population densities through re-
duced breeding success, direct intensity-dependent mor-
tality or, indirectly, as vectors for pathogenic
microparasites such as viruses and spirochaetes. In
colonies of Peruvian seabirds, the tendency of nest and
chick desertion was strongly correlated with tick abun-
dance, and a reanalysis of the Peruvian data suggests
that the proportion of breeding birds that abandon the
colony is on average higher during El Niflo years (40.7%)
than during other years (14.4%). Whereas nest desertion
seems unrelated to the negative impact ENSO may have
on the coastal fish-stocks exploited by the birds, the
climate oscillation might well act through the significant
influence of temperature and humidity on the reproduc-
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tion, development rate, survival and activity of parasitic
ticks. Correlations between climate and tick dynamics as
well as their activity have previously been demonstrated
(Miscevic et al. 1989, Korotkov 1998, Lindgren et al.
2000).

In the northeast Atlantic, ticks have also been shown
to affect the breeding populations of kittiwakes (Rissa
tridactyla) negatively. Although weather conditions may
affect the survival rate of seabirds in several ways
unrelated to parasites, the NAO could partly mediate
such population trends through its impact on parasite
abundance and activity.

[6] The calanoid copepod Diaptomus novamexicanus is
competitively superior to other members of the
zooplankton community in a Californian lake. However,
D. novamexicanus is parasitised by a fungus (Phy-
comycetes) that destroys the copepod’s eggs. The suc-
cessful establishment of the fungal infection appears
strongly temperature-dependent and is therefore likely
to be affected by climate oscillations. Low spring tem-
peratures following a cold winter allow the copepod eggs
to hatch before the fungus manages to spread through
the host population. After mild winters, in contrast, the
infestation develops to epizootic proportions before
hatching occurs, which causes the D. novamexicanus
population to collapse. Released from their dominant
competitor, the abundance of other pelagic crustaceans
increases, changing the entire structure of the zooplank-
ton community.

[7] In northeastern American lakes, bluegill sunfish
Lepomis macrochirus are often heavily infected by
metacercariae of the trematode Uvulifer ambloplitis that
cause ‘blackspot’ disease. Because the condition factor
of the sunfish is a negative function of infection intensity,
and because the fish do not feed during winter, heavily
infected individuals are particularly likely to die from
their infection before the arrival of spring. So, a substan-
tially larger part of the sunfish population may die-off
during cold winters (which are associated with a high
NAO index in this region) than during warmer winters.

[8] In the Pacific Northwest of the United States
(Oregon) the populations of amphibians (frogs and
toads) have declined in resent decades due to increased
embryo mortality. Whereas the pathogenic oomycete
Saprolegnia ferax (water mold) has been identified as the
ultimate mortality agent, the embryo’s vulnerability to
infection is positively related to UV-B exposure. The flux
of UV-B radiation is a negative function of water depth
at the oviposition sites, which in turn is determined by
winter precipitation in the area. Since the level of
precipitation in Oregon itself is a positive function of the
southern oscillation index (SOI), the ENSO hence con-
trols the population dynamics of certain amphibians
through its impact on parasite outbreaks.

These circumstances may also affect the structure of
the local amphibian community. The Pacific treefrog
Hyla regilla is usually competitively inferior to the
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Cascades frog Rana cascadae, the latter has strong
negative effects on the growth, development and sur-
vival of Hyla. However, as opposed to Rana, Hyla
seems unaffected by the presence of the water mold,
and where the parasite is abundant the outcome of the
competitive interactions between the two frog species is
reversed.

[9] In northern England the population dynamics of
red grouse Lagopus lagopus is determined by the di-
rectly transmitted endoparasitic nematode Tri-
chostrongylus tenuis. The nematode reduces the birds’
reproductive success and may cause intensity-dependent
mortality, and where the parasite is abundant, the
grouse population dynamics are characterised by recur-
rent nematode-induced crashes. In absence of the para-
site the grouse population develops more steadily. The
infection intensity of 7. tenuis is largely determined by
the survival rate of the free-living larvae, which itself
depends on soil moisture. Accordingly, the cyclicity of
the grouse dynamic is associated with particularly high
levels of precipitation that increase the survival rate of
the parasite larvae and hence infection intensity in the
birds. Since changes in precipitation levels are an inte-
gral part of NAO, transitions between cyclic and non-
cyclic population development in red grouse could be
triggered by the climate oscillation in parts of the bird’s
distributional range.

The above overview suggests that climate oscillations
can have a profound coordinated influence upon host-
parasite interactions, and in turn host population and
community dynamics. The magnitude of the impact of
large-scale climate changes on ecosystems may not be
fully understood unless weather-mediated host-parasite
interactions are taken into consideration. Here, it
should be emphasised that the influence of parasites can
also be of a more subtle nature: parasites may deter-
mine the strength by which the population trend of a
given host organism correlates with the climate oscilla-
tion. Parasitism usually acts in a host density-depen-
dent manner, and in cases where the climate change
directly favours both host and parasite, the negative
influence of the parasites may tend to counter the
otherwise positive effect on the increasing host popula-
tion. This could result in either no or a weaker correla-
tion with climate than otherwise expected. On the other
hand, in cases where changing weather conditions infl-
ict a small but direct (i.e. for other reasons than para-
sites) decline in the host population and simultaneously
enhance parasite abundance, the inherently weak host
population-climate relationship may become signifi-
cantly stronger due to the increasing parasite abun-
dance. Moreover, should the life-cycle processes of a
given species of parasite be relatively resilient to climate
changes, parasite-induced mortality could still be the
ultimate factor that brings the host population down if
weather conditions change to the worse: the most heav-
ily infected and hence usually competitively inferior
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individuals will be the first to go. The synergistic effect
of bad weather and parasitism has, for instance, been
proposed to precipitate crashes in Soay sheep popula-
tions (Grenfell et al. 1998).

The impact of climate oscillations on host-parasite
interactions could also be approached from the perspec-
tive of epidemiological models. The population dynam-
ics of hosts and parasites can be described by simple
differential equations, and the ability of a parasite to
invade, spread and persist in a host population can be
modelled using the parasite’s basic reproductive rate,
R, (Anderson and May 1978, 1982). The parameters
included in these epidemiological models range from
the mortality rate of parasite infective stages in the
external environment, to the parasite-induced rate of
host mortality. All these parameters can be influenced
substantially by climatic conditions. It should be possi-
ble to incorporate knowledge of the effects of climate
on epidemiological parameters into the models, to
achieve forecasts of the impact of the climate oscilla-
tions on host-parasite population dynamics.

Our goal was to highlight the potential links between
parasitism and climate oscillations. To date, no studies
have directly considered the importance of large-scale
climate fluctuations for host-parasite interactions and
the potential cascading community effects. It may be
worthwhile to address such complex interactions in
future investigations.
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